Neither CUDA nor MPS are available - defaulting to CPU. Note: This module is much faster with a GPU.

所讨论的环境是 anaconda ,pytorch 环境

问题:

当项目需要使用GPU的时候,但是没有下载GPU版本的torch和torchvision,下载成了CPU版本的。

在环境中进入python命令行。

如果是这样子,那确定是安装的是CPU版本的。

解决方案:
我的方法:

重新建立一个虚拟环境(因为在原来的基础上不会改,担心改错)。

使用pip安装GPU版本的支持CUDA 11.7的torch和torchvision,并且版本分别为torch==2.0.1和torchvision==0.15.2。具体可以根据需要的版本进行修改。

pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 -f https://download.pytorch.org/whl/torch_stable.html

安装完成之后,检查是否可以正常使用:


 这样就完成了,可以使用GPU来加速项目。

 

### Keil5 编译报错不显示具体位置的解决方案 当使用 Keil5 进行编译时,如果遇到报错但未显示具体的错误位置,可能是由于以下几个原因引起的: #### 1. **编译器版本兼容性** 确保所使用的 ARM 编译器 V5 版本与当前安装的 Keil5 版本完全兼容。如果不匹配,则可能导致某些错误无法被准确定位[^1]。可以通过以下方式验证并调整: - 打开 Keil5 的工具链设置界面。 - 检查 `Arm Compiler` 或 `C/C++ Compiler` 的路径是否指向正确的编译器目录。 #### 2. **编译选项配置不当** 有时,编译选项中的参数可能会影响错误报告的具体程度。例如,默认情况下,部分警告或错误信息可能会被忽略或者简化输出。可以尝试启用更详细的调试模式来获取更多信息: - 在项目属性中找到 `Options for Target -> C/C++` 设置页面。 - 添加 `-v` 参数至额外命令行选项字段,这会增加编译过程的日志详细度[^4]。 另外,对于 STM32 系列微控制器而言,匿名结构体支持需要显式开启 GNU 模式或其他特定 pragma 命令才能正常工作;否则也会引发类似的模糊错误提示[^3]。 #### 3. **源文件编码问题** 如果项目的源码文件存在字符集差异(比如 UTF-8 含 BOM 和 ANSI),也可能干扰解析流程从而掩盖实际发生的位置。建议统一所有参与构建的文档采用一致的标准格式——推荐无BOM版UTF-8编码保存每一个.c/.h 文件。 #### 示例代码片段展示如何修改编译参数以提高诊断精度 ```c // 修改后的Makefile部分内容示例 CC = armcc.exe CFLAGS += -O0 -g3 -Wall -Wextra -pedantic-errors -std=c99 -v ``` 通过上述措施通常能有效改善因缺乏上下文而导致难以定位的问题状况。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值