自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(70)
  • 资源 (2)
  • 问答 (2)
  • 收藏
  • 关注

原创 目标检测 删除不想要的标签信息

【代码】目标检测 删除不想要的标签信息。

2024-09-15 17:39:23 163

原创 接摄像头 rtsp流 模型检测

【代码】接摄像头 rtsp流 模型检测。

2024-08-22 17:28:26 133

原创 将标签和对应的图像进行划分

【代码】将标签和对应的图像进行划分。

2024-08-16 21:38:13 121

原创 删除有图像没标签的图像或有标签没图像的标签

【代码】删除有图像没标签的图像或有标签没图像的标签。

2024-08-16 21:37:00 90

原创 将xml标签文件转成txt标签文件

【代码】将xml标签文件转成txt标签文件。

2024-08-16 21:35:10 149

原创 将标签中的检测框打在图像上,验证标注是否正确

【代码】将标签中的检测框打在图像上,验证标注是否正确。

2024-08-16 21:32:59 144

原创 Key img_path is not in available keys;TypeError: Caught TypeError in DataLoader worker process 0

真的是要把人整的崩溃了,先是mmcv不兼容,cuda降版本,来回修改环境变量,再是Key img_path is not in available keys,一直怀疑是我数据格式的问题,来回修改。看有的博主说num_worker,于是改改改,不起作用(省略其中的n种方法)。这不兼容,那不兼容,真让人崩溃。库与 MMYOLO 不兼容,从而导致此错误。这是一个图像增强库,因为某些版本的。

2024-07-15 10:43:03 524 4

原创 验证集精度来回震荡是什么原因,怎么解决

验证集精度来回震荡是什么原因,怎么解决

2023-02-22 16:17:20 5027 1

原创 RuntimeError: DataLoader worker (pid(s) 17016, 18312) exited unexpectedly

RuntimeError: DataLoader worker (pid(s) 17016, 18312) exited unexpectedly

2023-02-18 14:44:37 3586

原创 AttributeError: type object ‘VisionTransformer‘ has no attribute ‘from_pretrained‘

AttributeError: type object 'VisionTransformer' has no attribute 'from_pretrained'

2023-02-17 20:05:24 1033

原创 DSAN代码:Deep Subdomain Adaptation Network forImage Classification

Deep Subdomain Adaptation Network forImage Classification

2022-07-07 20:43:13 1873 2

原创 深度学习:AttributeError: module ‘torchvision.transforms‘ has no attribute ‘Scale‘

报错:AttributeError: module 'torchvision.transforms' has no attribute 'Scale'

2022-06-20 11:00:32 3559

原创 深度学习:from tensorflow.contrib.rnn import LSTMStateTuple没有contrib模块

ModuleNotFoundError: No module named ‘tensorflow.contrib‘

2022-06-17 16:28:44 1214

原创 深度学习2:支持向量机与对偶问题的转化,强对偶定理,SVM算法总结

2022-04-24 17:19:07 1716

原创 深度学习1:支持向量机(优化问题、SVM处理线性及非线性问题、常用和函数、原问题和对偶问题)

2022-04-24 15:34:58 1417

原创 深度学习:ImportError: cannot import name ‘QuantStub‘ from ‘torch.ao.quantization‘

错误语句:from torch.ao.quantization import QuantStub, DeQuantStub正确语句:from torch.quantization import QuantStub, DeQuantStubtorch版本问题。

2022-04-17 09:00:09 12821 2

原创 深度学习:目录的获取 绝对路径的使用

# 获取当前目录print(os.getcwd())# 获取上级目录print(os.path.abspath(os.path.join(os.getcwd(), "..")))# 获取上上级目录print(os.path.abspath(os.path.join(os.getcwd(), "../..")))# 绝对路径的使用r'绝对路径地址 C:\.\...''' : 当前同级目录'/' :根目录'./' :当前同级目录'../' :上级目录.

2022-04-16 16:10:21 998

原创 机器学习笔记1(西瓜书):聚类任务、性能度量、距离计算、

聚类: 试图将数据集中的样本划分为若干个不相交的子集,每个子集称为一个“簇”。性能度量: 聚类性能度量亦称聚类“有效性指标”。通常希望聚类结果的“簇内相似度”高且“簇间相似度”低。 聚类性能度量大致有两类,外部指标和内部指标。 外部指标:将聚类结果与某个“参考模型”进行比较。x为数据集数据,C是通过聚类划分结果,C*是参考模型给出的簇划分结果,和*分别表示与C和C*对应的簇标记向量。因此常用的聚类性能度量外部指...

2022-04-15 21:13:04 1193

原创 深度学习:CNN的实现

'''CNN的实现image-->Conv-->ReLU-->Pooling-->Affine-->ReLU-->Affine-->Softmax-->参数: input_dim----输入数据的维度:(通道,高,长) conv_param----卷积层的超参数(字典)。字典的关键字如下: filter_num---滤波器的数量 filter_size---滤波器的大小 stride---.

2022-04-14 15:06:55 426

原创 迁移学习论文解读:《Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering》

存在问题: 直接实现源域和目标域对齐会破坏目标数据的内在结构。 但是如果先对目标域数据进行聚类,则可以保留完整的目标数据结构。 ...

2022-04-13 10:41:48 1231 1

原创 深度学习:view size is not compatible with input tensor‘s size and stride (at least one dimension spans a

错误提示:view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.错误代码:prec1 = accuracy(-1 * dist_xt_ct.data, target_targets, topk=(1,))[0].item()正确代码:

2022-04-12 11:26:07 1837

原创 深度学习pytorch代码:利用GPU进行卷积神经网络训练(含代码注释)

GPU训练方法一.cuda可以使用GPU训练的内容:数据(输入、标签) 损失函数 网络模型GPU训练方法二.to(device)# 使用cpu训练device = torch.device("cpu")#使用GPU训练torch.device("cuda")# 指定训练的GPUtorch.device("cuda:0")model.eval() # 将模型转化为测试类型model.train() # 将模型转化为训练模型...

2022-04-11 10:39:08 3986 1

原创 深度学习pytorch代码:完整的卷积神经网络模型的搭建及训练(含注释)

import torch.optim.optimizerimport torchvision# 准备数据集from torch.utils.tensorboard import SummaryWriterfrom model import *from torch.utils.data import DataLoadertrain_data = torchvision.datasets.CIFAR10(r"C:\Users\123\Desktop\python4.7\test03\data".

2022-04-11 08:59:52 2545

原创 深度学习pytorch:VGG网络模型的使用、修改及保存、添加线性层、修改网络输出

# 现有网络模型的使用及修改import torchvisionfrom torch import nn# 加载预训练网络模型vgg16_true = torchvision.models.vgg16(pretrained=True) # 下载网络模型vgg16_false = torchvision.models.vgg16(pretrained=False) # 只是加载网络模型print((vgg16_true))train_data = torchvision.datas.

2022-04-10 15:45:09 4148 2

原创 深度学习pytorch代码:损失函数与反向传播

损失函数:计算实际输出和目标之间的差距 为我们更新输出提供一定的依据(反向传播)注: 在L1损失下,如果reduction=none,则输入和输出的维度要相同import torchfrom torch import nnfrom torch.nn import L1Loss, MSELossinputs = torch.tensor([1, 2, 3], dtype=torch.float32)targets = torch.tensor([1, 2,...

2022-04-10 14:36:05 1258

原创 深度学习pytorch代码:Sequential的使用及CIFAR10模型搭建实战

CIFAR10模型结构:import torchfrom mmcv.cnn import Conv2d, MaxPool2d, Linearfrom torch import nnfrom torch.nn import Flatten, Sequentialclass LR(nn.Module): def __init__(self): super(LR, self).__init__() # self.conv1 = Conv2d.

2022-04-10 11:12:57 1381

原创 python笔记4:面向过程和面向对象基本概念及区分、类和对象

面向过程--怎么做?把完成某一个需求的所有步骤从头到尾逐步实现 根据开发需求,将某些独立功能的代码封装成一个又一个函数 最后完成的代码,就是顺序的嗲用不同的函数特点注重步骤与过程,不注重职责分工 如果需求复杂,代码会变的很复杂 开发复杂项目,没有固定的套路,开发难度很大面向对象--谁来做?相比较函数,面向对象是更大的封装,根据职责在一个对象中封装多个方法在完成某一个需求前,首先确定职责--要做的事情(方法) 根据职责确定不同的对象,在对象内部封装不同的方法(多个) 最后.

2022-04-10 10:10:17 223

原创 python笔记3:字符串的切片(代码)

切片方法适用于字符串、列表、元组切片使用索引值来限定范围,从一个大的字符串中切出小的字符串 列表和元组都是有序的集合,都能够通过索引值获取到对应的数据 字典是一个无序的集合,是使用键值对保存数据格式:字符串[开始索引:结束索引:步长] 左闭右开若不指定结束索引,则从开始索引处切到最后一个值num_str="0,1,2,3,4,5,6,7,8,9"# 将字符串逆序输出num_str[-1::-1]Out[8]: '9876543210'...

2022-04-09 10:38:29 1006

原创 python笔记2:模块概念及使用、pyc文件(代码)

模块是python程序架构的一个核心概念模块就好比是工具包,想要使用这个工具包里的工具,就要导入import这个模块 每一个以扩展名py结尾的python源代码文件都是一个模块 在模块中定义的全局变量、函数都是模块能够提供给外界直接使用的工具# 定义模块def print_line(char, times): ''' :param char: :param times: :return: ''' print(char * times).

2022-04-09 10:12:05 233

原创 Python笔记1:函数的定义及使用(代码)

定义函数的格式:def 函数名(): 函数封装的代码 ......注:def是define的缩写 函数是对一段具有独立功能代码的封装

2022-04-08 20:57:22 350

原创 深度学习pytorch:linear()

import torchimport torchvision.datasetsfrom mmcv import DataLoaderfrom mmcv.cnn import Linearfrom torch import nndataset = torchvision.datasets.CIFAR10(r"C:\Users\123\Desktop\python4.7\test03\data", train=False, transform=torchvision.transforms.ToTe.

2022-04-08 19:23:37 254

原创 深度学习pytorch代码:非线性激活Relu()

input为ReLu()中的一个参数,默认为Faluse,保留输入数据import torchfrom torch.nn import ReLUfrom torch import nninput =torch.tensor([ [1, -0.5], [-1, 3] # 1为batchsize])output = torch.reshape(input, (-1, 1, 2, 2))print(output.shape)class LR(nn.Module): ...

2022-04-08 11:12:54 2500

原创 深度学习pytorch代码:dilation空洞卷积、最大池化

dilation=1,称为空洞卷积,在卷积核相邻像素之间插入一个空白像素。默认池化核:kernel_size = 3Ceil_model=True or False: 是否对非完整像素进行保留(默认为False)import torchimport torchvision.datasetsfrom mmcv import DataLoaderfrom mmcv.cnn import MaxPool2dfrom torch import nnfrom torch.utils..

2022-04-08 10:40:21 3166 4

原创 深度学习:size of input tensor and input format are different

错误代码: writer.add_image("input", imgs, step, dataformats='HWC')正确代码: writer.add_images("input", imgs, step, dataformats='HWC')错误原因:add_image只接收单一图像,而我们直接将imgs批量传入是不行的。...

2022-04-08 09:20:34 582

原创 深度学习pytorch代码:卷积神经网络模型module的搭建、卷积层conv_1 conv_2

jmodule是所有神经网络模块的基类,我们自己构造的模型也应该继承这个类。import torchfrom torch import nnclass LR(nn.Module): def __init__(self) -> None: # 重写方法快捷键 alt+insert super().__init__() def forward(self, input): output = input + 1 return ou

2022-04-07 22:17:52 474

原创 深度学习pytorch代码: torchvision 中的数据集使用 、DataLoader的使用

torchvision中数据集的自动下载以及使用import torchvisionfrom tensorboardX import SummaryWriterdataset_transform = torchvision.transforms.Compose( [torchvision.transforms.ToTensor() ])train_set = torchvision.datasets.CIFAR10(root="./data", train=True, transf

2022-04-07 21:11:18 602

原创 深度学习pytorch代码: transforms结构及用法 常见的transforms

transforms.py 工具箱totensor resize图片-------->工具(transforms)---------->结果 | 使用工具创建具体的工具 transforms.ToTensor()使用工具:输入:图片输出:result = tool(图片)from PIL import Image as imimfrom tensorboardX...

2022-04-07 17:34:15 2588

原创 深度学习pytorch代码:TensorBoard使用 图像变换 transforms的使用

from torch.utils.tensorboard import SummaryWriterimport numpy as npfrom PIL import Imagewriter = SummaryWriter("logs") # 存储事件文件image_path = r"C:\Users\123\Desktop\python4.7\hymenoptera_data\train\ants\0013035.jpg"image_PIL = Image.open(image_path).

2022-04-07 15:13:37 341

原创 深度学习pytorch代码:数据加载 Dataset() Dataloader()

Dataset(): 提供一种方式去获取数据及其label功能:如何获取每个数据及其label 告诉我们总共有多少数据Dataloader(): 为后面的网络提供不同的数据形式(对数据进行打包)from torch.utils.data import Datasetfrom PIL import Imageimport osclass MyData(Dataset): def __init__(self, root_dir,label_dir): sel

2022-04-07 14:29:16 691

原创 深度学习pytorch代码:两大函数—dir() && help()

dir():打开、看见help():说明书打开工具箱:dir(pytorch)输出:1、2、3、4dir(pytorch.3)输出:a,b,c查看其功能:help(pytorch.3.a)输出:将此扳手放在特定的地方,然后拧动实战:import torchtorch.cuda.is_available()# Out[3]: Truedir(torch)'''Out[4]: ['AVG', 'AggregationType', 'Ali.

2022-04-07 11:21:21 251 1

使用yolov8进行烟火检测 目标识别 目标检测

烟火检测是一种计算机视觉任务,主要用于识别和定位图像或视频中的烟雾和火焰。这类检测在森林防火、工业安全监控、智能城市监控等应用中具有重要意义。与其他目标检测任务相比,烟火检测具有一些独特的挑战,如火焰的形状不规则、颜色变化多端、背景复杂等。 YOLO等实时目标检测算法由于其速度快、全局推理的特点,也被应用于烟火检测任务中。通过训练YOLO模型,检测系统能够快速识别出图像或视频中的烟雾和火焰区域,并在实际场景中实时预警。 优点: YOLO在烟火检测中的高效性使其能够在实时视频流中快速做出检测,适合应用于监控系统、无人机巡检等场景。 缺点: 在烟雾、火焰形状复杂多变的情况下,YOLO可能需要通过大量数据增强和模型优化来提升检测精度。 应用场景: 森林防火监控: 利用烟火检测系统对森林进行实时监控,及时发现火灾隐患。 工业安全: 在工厂、石化等高危环境中,烟火检测系统可以帮助快速发现火灾源头,减少财产损失和人员伤亡。 城市监控: 智能监控系统结合烟火检测算法,能够在城市公共区域实时预警火灾,提高城市安全。 烟火检测技术的发展有助于提升火灾预防和应急响应的效率,减少火灾带来的危害。

2024-08-22

老鼠视频,用于目标检测

YOLO(You Only Look Once)是一种广泛应用于计算机视觉中的实时目标检测算法,由Joseph Redmon等人于2016年首次提出。它的核心思想是将目标检测问题转换为一个回归问题,从而实现对图像中的多个对象进行快速检测。 主要特点: 单次预测: YOLO通过一次前向传播就能预测出图像中所有目标的位置和类别,因此具有非常高的检测速度,适合实时应用。 全局推理: YOLO直接从整幅图像进行预测,这使得它在处理图像中相邻目标时更加准确,减少了背景错误检测。 端到端训练: YOLO模型是端到端的,这意味着输入图像后,输出的就是对象的类别和位置,无需额外的处理步骤。 高效性: YOLO在保持高速度的同时,还能提供较好的精度,因此在很多需要实时检测的应用中被广泛采用。 工作原理: YOLO将输入图像划分为一个S×S的网格,每个网格负责预测若干个边界框以及这些框的置信度和类别概率。通过将检测过程简化为回归问题,YOLO模型能够以极快的速度进行检测。 优点: 检测速度非常快,适合实时应用。 能够在保持速度的同时检测多个对象。 全局推理,减少了背景错误检测。

2024-08-22

明火视频 YOLO检测 目标检测

用于yolo目标检测视频,一段明火视频。

2024-08-19

目标检测老鼠视频数据集

老鼠数据集,用于目标检测

2024-08-16

简单的磁偶极子模型仿真

针对磁偶极子推导公式在matlab上进行的仿真

2022-05-11

飞机磁场matlab仿真

针对飞机磁场进行源仿真,使用matlab平台,包含注释。代码简洁但是完整

2022-05-11

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除