【图论基础详解】

本文介绍了图论的基础概念,包括无向图、有向图、连通性、路径、环、稀疏图与稠密图等。重点讲解了在图中寻找特定路径的算法,如深搜和反向建边。同时,给出了实际问题的解题思路,如最少河蟹封锁策略和危险系数计算。文章通过实例展示了如何利用DFS解决图的遍历问题,以及如何优化搜索过程提高效率。
摘要由CSDN通过智能技术生成

[蓝桥杯 2013 国 C] 危险系数

题目背景

抗日战争时期,冀中平原的地道战曾发挥重要作用。

题目描述

地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。

我们来定义一个危险系数 D F ( x , y ) DF(x,y) DF(x,y)

对于两个站点 x x x y ( x ≠ y ) , y(x\neq y), y(x=y), 如果能找到一个站点 z z z,当 z z z 被敌人破坏后, x x x y y y 不连通,那么我们称 z z z 为关于 x , y x,y x,y 的关键点。相应的,对于任意一对站点 x x x y y y,危险系数 D F ( x , y ) DF(x,y) DF(x,y) 就表示为这两点之间的关键点个数。

本题的任务是:已知网络结构,求两站点之间的危险系数。

输入格式

输入数据第一行包含 2 2 2 个整数 n ( 2 ≤ n ≤ 1000 ) n(2 \le n \le 1000) n(2n1000) m ( 0 ≤ m ≤ 2000 ) m(0 \le m \le 2000) m(0m2000),分别代表站点数,通道数。

接下来 m m m 行,每行两个整数 u , v ( 1 ≤ u , v ≤ n , u ≠ v ) u,v(1 \le u,v \le n,u\neq v) u,v(1u,vn,u=v) 代表一条通道。

最后 1 1 1 行,两个数 u , v u,v u,v,代表询问两点之间的危险系数 D F ( u , v ) DF(u,v) DF(u,v)

输出格式

一个整数,如果询问的两点不连通则输出 − 1 -1 1

样例 #1

样例输入 #1

7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6

样例输出 #1

2

提示

时限 1 秒, 64M。蓝桥杯 2013 年第四届国赛

1.题目大意:

给你 nn 个点,mm 条边。注意:这里是双向边。 再给定起点和终点,求从起点到终点必须经过点的个数。

2.分析:

这道题的 nn 和 mm 都很小,可以用深搜做。
#include <bits/stdc++.h>
using namespace std;
const int N = 100005;
int n, m;
vector<int> G[N];
int st, ed;
bool book[N];
int counts[N];
int total;
void dfs(int now)
{
    if (now == ed) //结束条件,深搜到末尾
    {
        total++; //计算能深搜到末尾的点的个数
        for (int i = 1; i <= n; i++)
        {
            if (book[i])
            {
                counts[i]++; //计算深搜过程中每个点被访问的次数
            }
        }
        return; //结束深搜
    }
    for (int i = 0; i < G[now].size(); i++) //遍历当前点的下一步能到达的所有点
    {
        int to = G[now][i]; //记录当前点下一步能到达的其中一个点
        if (!book[to])      //如果没被访问过,则标记
        {
            book[to] = true;
            dfs(to);          //搜索下一个点
            book[to] = false; //搜完后取消标记
        }
    }
}
int main()
{
    cin >> n >> m;
    for (int i = 1; i <= m; i++)
    {
        int x, y;
        cin >> x >> y;
        G[x].push_back(y); //无向图
        G[y].push_back(x);
    }
    cin >> st >> ed;
    book[st] = true; //第一个点肯定为已经访问过
    dfs(st);
    int ans = 0;
    for (int i = 1; i <= n; i++)
    {
        if (counts[i] == total)
        //如果某个点在深搜中被访问过的次数等于深搜的次数,即每次搜索必有该点,那么该点为关键点
        {
            ans++;
        }
    }
    ans -= 2; //由于起始点和结束点不被包括在答案内,所以要掐头去尾
    cout << ans;
}

图的遍历

题目描述

给出 N N N 个点, M M M 条边的有向图,对于每个点 v v v,求 A ( v ) A(v) A(v) 表示从点 v v v 出发,能到达的编号最大的点。

输入格式

1 1 1 2 2 2 个整数 N , M N,M N,M,表示点数和边数。

接下来 M M M 行,每行 2 2 2 个整数 U i , V i U_i,V_i Ui,Vi,表示边 ( U i , V i ) (U_i,V_i) (Ui,Vi)。点用 1 , 2 , … , N 1,2,\dots,N 1,2,,N 编号。

输出格式

一行 N N N 个整数 A ( 1 ) , A ( 2 ) , … , A ( N ) A(1),A(2),\dots,A(N) A(1),A(2),,A(N)

样例 #1

样例输入 #1

4 3
1 2
2 4
4 3

样例输出 #1

4 4 3 4

提示

  • 对于 60 % 60\% 60% 的数据, 1 ≤ N , M ≤ 1 0 3 1 \leq N,M \leq 10^3 1N,M103
  • 对于 100 % 100\% 100% 的数据, 1 ≤ N , M ≤ 1 0 5 1 \leq N,M \leq 10^5 1N,M105

反向建边 + dfs

按题目来每次考虑每个点可以到达点编号最大的点,不如考虑较大的点可以反向到达哪些点

循环从N到1,则每个点i能访问到的结点的A值都是i

每个点访问一次,这个A值就是最优的,因为之后如果再访问到这个结点那么答案肯定没当前大了
#include <bits/stdc++.h>
using namespace std;
const int N = 100005;
inline int read() //快速读取
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9')
    {
        if (ch == '-')
            f = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9')
    {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    return x * f;
}
int n, m;
vector<int> G[N];
int counts[N];
void dfs(int now, int max)
{
    if (counts[now]) //如果已经标记过,则结束搜索
        return;
    counts[now] = max;                      //起始点能到达的点都标记为起始点的编号
    for (int i = 0; i < G[now].size(); i++) //遍历从该点下一步能到达的所有点,进一步搜索
    {
        dfs(G[now][i], max);
    }
}
int main()
{
    n = read();
    m = read();
    for (int i = 1; i <= m; i++)
    {
        int x = read(), y = read();
        // G[x].push_back(y);
        G[y].push_back(x); //由于正向搜索比较费时,因此可以考虑逆向搜索
    }
    for (int i = n; i; i--)
    //从最大的编号开始,往小的搜搜,所有被访问过的点对应的最大编号答案即为该点
    {
        dfs(i, i);
    }
    for (int i = 1; i <= n; i++)
    {
        cout << counts[i] << " ";
    }
}

封锁阳光大学

题目描述

曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街。河蟹看到欢快的曹,感到不爽。河蟹决定封锁阳光大学,不让曹刷街。

阳光大学的校园是一张由 n n n 个点构成的无向图, n n n 个点之间由 m m m 条道路连接。每只河蟹可以对一个点进行封锁,当某个点被封锁后,与这个点相连的道路就被封锁了,曹就无法在这些道路上刷街了。非常悲剧的一点是,河蟹是一种不和谐的生物,当两只河蟹封锁了相邻的两个点时,他们会发生冲突。

询问:最少需要多少只河蟹,可以封锁所有道路并且不发生冲突。

输入格式

第一行两个正整数,表示节点数和边数。
接下来 m m m 行,每行两个整数 u , v u,v u,v,表示点 u u u 到点 v v v 之间有道路相连。

输出格式

仅一行如果河蟹无法封锁所有道路,则输出 Impossible,否则输出一个整数,表示最少需要多少只河蟹。

样例 #1

样例输入 #1

3 3
1 2
1 3
2 3

样例输出 #1

Impossible

样例 #2

样例输入 #2

3 2
1 2
2 3

样例输出 #2

1

提示

【数据规模】
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 1 0 4 1\le n \le 10^4 1n104 1 ≤ m ≤ 1 0 5 1\le m \le 10^5 1m105,保证没有重边。

dfs+染色

因为整张图可能包含多张小图,遍历每一个节点,如果还有没搜过的节点就以当前节点为根开始bfs

bfs过程中如果遇到相邻节点染色相同的情况就跳出,输出impossible即可

染色方案选取较小的一种
#include <bits/stdc++.h>
using namespace std;
inline int read() //快速读取
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9')
    {
        if (ch == '-')
            f = -1;
        ch = getchar();
    }
    while (ch >= '0' && ch <= '9')
    {
        x = (x << 1) + (x << 3) + (ch ^ 48);
        ch = getchar();
    }
    return x * f;
}
int m, n;
const int N = 1e5 + 5;
int a[N];
int t[2]; //记录颜色
bool vis[N];
vector<int> G[N];
bool dfs(int u, int color)
{
    vis[u] = true;                        //标记当前点已经访问过
    a[u] = color;                         //涂色
    t[color]++;                           //该种颜色的数量加一
    for (int i = 0; i < G[u].size(); i++) //遍历当前点的下一步能到达的所有点
    {
        int v = G[u][i];            //记录下一个点
        if (vis[v] && a[v] == a[u]) //下一个点访问过而且颜色跟当前颜色相同
            return 0;               //就结束搜索,返回false
        else if (!vis[v])           //没访问过
        {
            bool flag = dfs(v, (color + 1) & 1); //将下一个点涂成不同颜色
            if (!flag)                           //涂色不成功
                return 0;                        //就结束搜索,返回false
        }
    }

    return 1;
}
int main()
{
    n = read(), m = read();
    for (int i = 1; i <= m; i++)
    {
        int x = read(), y = read();
        G[x].push_back(y); //无向图
        G[y].push_back(x);
    }
    int ans = 0;
    for (int i = 1; i <= n; ++i)
        if (!vis[i]) //如果该点没被标记
        {

            t[0] = t[1] = 0; //先将颜色数归零
            bool flag = dfs(i, 0);

            if (!flag)
            {
                cout << "Impossible";
                return 0;
            }
            ans += min(t[0], t[1]); //答案加上颜色数小的那个
        }
    cout << ans;
    return 0;
}

学习目标

  • 掌握图的基本概念
  • 掌握图的一些性质

图的概念

基本概念

图 (Graph) 是一个二元组 G = ( V ( G ) , E ( G ) ) G=(V(G), E(G)) G=(V(G),E(G)) 。其中 V ( G ) V(G) V(G)是非空集,称为 点集 (Vertex set) ,对于 V V V 中的每个元素,我们称其为 顶点 (Vertex)节点 (Node) ,简称 E ( G ) E(G) E(G) V ( G ) V(G) V(G) 各结点之间边的集合,称为 边集 (Edge set)

常用 G = ( V , E ) G=(V,E) G=(V,E) 表示图。

V , E V,E V,E 都是有限集合时,称 G G G有限图

V V V E E E 是无限集合时,称 G G G无限图

图有多种,包括 无向图 (Undirected graph)有向图 (Directed graph)混合图 (Mixed graph)

若 G 为无向图,则 E 中的每个元素为一个无序二元组 (u, v) ,称作 无向边 (Undirected edge) ,简称 边 (Edge) ,其中 u , v ∈ V u, v \in V u,vV 。设 $e=(u,v) $,则 u u u v v v 称为 e e e端点 (Endpoint)

G G G 为有向图,则 E E E 中的每一个元素为一个有序二元组 ( u , v ) (u,v) (u,v),有时也写作 u → v u \to v uv ,称作 有向边 (Directed edge) ,在不引起混淆的情况下也可以称作 边 (Edge) 。设 e = u → v e = u \to v e=uv ,则此时 u 称为 e 的 起点 (Tail) v v v 称为 e e e终点 (Head) ,起点和终点也称为 e e e端点 (Endpoint) 。并称 u u u v v v 的直接前驱, v v v u u u 的直接后继。

G G G 为混合图,则 E E E 中既有向边,又有无向边。

G G G 的每条边 e k = ( u k , v k ) e_k=(u_k,v_k) ek=(uk,vk) 都被赋予一个数作为该边的 ,则称 GG 为 赋权图 。如果这些权都是正实数,就称 G G G正权图

图 $G 的点数 $ ∣ V ( G ) ∣ \left| V(G) \right| V(G) 也被称作图 GG 的 阶 (Order)

形象地说,图是由若干点以及连接点与点的边构成的。

img

图上的关系

点与点——邻接

在无向图 G = ( V , E ) G = (V, E) G=(V,E) 中,对于两顶点 u 和 v ,若存在边 ( u , v ) (u,v) (u,v) ,则称 u 和 v 是 相邻(邻接)的

一个顶点 $ v \in V$的 邻域 (Neighborhood) 是所有与之相邻的顶点所构成的集合,记作 N ( v ) N(v) N(v)

PS:邻接表存储的就是邻域,并且由此得名。

点与边——关联

在无向图 G = ( V , E ) G = (V, E) G=(V,E) 中,若点 v 是边 e 的一个端点,则称 v 和 e 是 **关联的 **。

度数

与一个顶点 v 关联的边的条数称作该顶点的 度 (Degree) ,记作 d ( v ) d(v) d(v)。特别地,对于边 ( v , v ) (v,v) (v,v) ,则每条这样的边要对 d ( v ) d(v) d(v) 产生 22 的贡献。

对于无向简单图,有 d ( v ) = ∣ N ( v ) ∣ d(v) = \left| N(v) \right| d(v)=N(v)

在有向图 G = ( V , E ) G = (V, E) G=(V,E)中,以一个顶点 v 为起点的边的条数称为该顶点的 出度 (Out-degree) ,记作 d + ( v ) d^+(v) d+(v)。以一个顶点 v 为终点的边的条数称为该节点的 入度 (In-degree) ,记作 d − ( v ) d^-(v) d(v)。显然 $d+(v)+d-(v)=d(v) $。

简单图

自环 (Loop) :对 E 中的边 e = ( u , v ) e = (u, v) e=(u,v) ,若 u = v u = v u=v ,则 e 被称作一个自环。

重边/平行边 (Multiple edge) :若 EE 中存在两个完全相同的元素(边) e 1 , e 2 e_1, e_2 e1,e2 ,则它们被称作(一组)重边。

简单图 (Simple graph) :若一个图中 没有自环和重边,它被称为简单图。非空简单无向图中一定存在度相同的结点。

如果一张图中有自环或重边,则称它为 多重图 (Multigraph)

在无向图中 (u, v) 和 (v, u) 算一组重边,而在有向图中, u→v 和 v→u 不为重边。

在题目中,如果没有特殊说明,是可以存在自环和重边的,在做题时需特殊考虑。

路径

途径 (Walk) / 链 (Chain) :一个点和边的交错序列,其中首尾是点—— v 0 , e 1 , v 1 , e 2 , v 2 , … , e k , v k v_0, e_1, v_1, e_2, v_2, \ldots, e_k, v_k v0,e1,v1,e2,v2,,ek,vk,有时简写为 v 0 → v 1 → v 2 → ⋯ → v k v_0 \to v_1 \to v_2 \to \cdots \to v_k v0v1v2vk 。其中 e i e_i ei 的两个端点分别为 v i − 1 v_{i-1} vi1 v i v_i vi 。通常来说,边的数量 k 被称作这条途径的 长度 (如果边是带权的,长度通常指路径上的边权之和,题目中也可能另有定义)。(以下设 w = [ v 0 , e 1 , v 1 , e 2 , v 2 , ⋯   , e k , v k ] w = \left[ v_0, e_1, v_1, e_2, v_2, \cdots, e_k, v_k \right] w=[v0,e1,v1,e2,v2,,ek,vk] 。)

迹 (Trail) :对于一条途径 w ,若 e 1 , e 2 , ⋯   , e k e_1, e_2, \cdots, e_k e1,e2,,ek两两互不相同,则称 w 是一条迹。

路径 (Path) (又称 简单路径 (Simple path) ):对于一条迹 w ,除了 v 0 v_0 v0 v k v_k vk 允许相同外,其余点两两互不相同,则称 w 是一条路径。

回路 (Circuit) :对于一个迹 w ,若 v 0 = v k v_0 = v_k v0=vk,则称 w 是一个回路。

环/圈 (Cycle) (又称 简单回路/简单环 (Simple circuit) ):对于一条简单路径 w ,若 v 0 = v k v_0 = v_k v0=vk ,则称 w 是一个环。

连通

无向图

对于一张无向图 G = ( V , E ) G = (V, E) G=(V,E) ,对于 u , v ∈ V u, v \in V u,vV,若存在一条途径使得 v 0 = u , v k = v v_0 = u, v_k = v v0=u,vk=v ,则称 u 和 v 是 连通的 (Connected) 。由定义,任意一个顶点和自身连通,任意一条边的两个端点连通。

若无向图 G = ( V , E ) G = (V, E) G=(V,E) ,满足其中任意两个顶点均连通,则称 GG 是 连通图 (Connected graph) , GG 的这一性质称作 连通性 (Connectivity)

若 H 是 G 的一个连通子图,且不存在 F 满足 H ⊊ F ⊆ G H\subsetneq F \subseteq G HFG且 F 为连通图,则 H 是 G 的一个 连通块/连通分量 (Connected component) (极大连通子图)。

有向图

对于一张有向图 G = ( V , E ) G = (V, E) G=(V,E),对于 u , v ∈ V u, v \in V u,vV,若存在一条途径使得$ v_0 = u, v_k = v$,则称 u 可达 v 。由定义,任意一个顶点可达自身,任意一条边的起点可达终点。(无向图中的连通也可以视作双向可达。)

若一张有向图的节点两两互相可达,则称这张图是 强连通的 (Strongly connected)

若一张有向图的边替换为无向边后可以得到一张连通图,则称原来这张有向图是 弱连通的 (Weakly connected)

与连通分量类似,也有 弱连通分量 (Weakly connected component) (极大弱连通子图)和 强连通分量 (Strongly Connected component) (极大强连通子图)。

n 个顶点的强连通图最多 n ( n − 1 ) n(n-1) n(n1) 条边,最少 n 条边。

图的连通性也是竞赛的一个常见考点,相关算法请后面将学习,现在先理解其概念即可。

稀疏图/稠密图

若一张图的边数远小于其点数的平方,那么它是一张 稀疏图 (Sparse graph)

若一张图的边数接近其点数的平方,那么它是一张 稠密图 (Dense graph)

这两个概念并没有严格的定义,一般用于讨论 时间复杂度 O ( ∣ V ∣ 2 ) O(|V|^2) O(V2) 的算法与 O ( ∣ E ∣ ) O(|E|) O(E)的算法的效率差异(在稠密图上这两种算法效率相当,而在稀疏图上 O ( ∣ E ∣ ) O(|E|) O(E)的算法效率明显更高)。

特殊的图

完全图

若无向简单图 G 满足任意不同两点间均有边,则称 G 为 完全图 (Complete graph) , nn 阶完全图记作 K n K_n Kn 。若有向图 G 满足任意不同两点间都有两条方向不同的边,则称 G 为 有向完全图 (Complete digraph)

若无向简单图 G = ( V , E ) G = \left( V, E \right) G=(V,E) 的所有边恰好构成一条简单路径,则称 G 为 链 (Chain/Path Graph) , n 阶的链记作 P n P_n Pn 。易知,一条链由一个圈图删去一条边而得。

树 (后面会学,不急)

如果一张无向连通图不含环,则称它是一棵 树 (Tree)

图的内容还有很多,我们寒假慢慢来(doge

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值