图论的基本概念

1. 图

顶点集: V ( G ) = { v 1 , v 2 , v 3 } V(G) = \{ v_1, v_2, v_3 \} V(G)={v1,v2,v3}
边集: E ( G ) = { e 1 , e 2 , e 3 } = { ( v i , v j ) , ⋅ ⋅ ⋅ } E(G) =\{e_1,e_2,e_3 \} = \{(v_i,v_j),···\} E(G)={e1,e2,e3}={(vi,vj),}

图的阶数 ν \nu ν= 图的顶点数 ∣ V ( G ) ∣ |V(G)| V(G)
图的边数 ε \varepsilon ε= 图的边数 ∣ E ( G ) ∣ |E(G)| E(G)

G = ( V ( G ) , E ( G ) ) , 简 记 G = ( V , E ) G= (V(G),E(G)),简记G=(V,E) G=(V(G),E(G))G=(V,E)

有限图:一个图的顶点集和边集都是有限集。
平凡图:只有一个顶点的图。
非平凡图:除平凡图以外的图。

有向图:图中的边均为有序偶对 ( v i , v j ) (v_i,v_j) (vi,vj)
有向边/弧: e = ( v i , v j ) e=(v_i,v_j) e=(vi,vj) v i v_i vi为尾, v j v_j vj为头

无向图:图中的边均为无序偶对 v i v j v_iv_j vivj
无向边: e = v i v j e=v_iv_j e=vivj

混合图:既有无向边又有有向边的图。

关联:边和它的两端点之间的关系。
相邻:同一条边的两个端点之间的关系。同一个顶点的两条边之间的关系。

环:两端点重合的边。
连杆:两端点不重合的边。
重边:一对顶点之间有两条以上的边联结,这些边叫重边。

简单图:既没有环,也没有重边的图。
完全图 K v K_v Kv:任意两顶点都相邻的简单图。

二部图/偶图: V ( G ) = X ∪ Y V(G) = X∪Y V(G)=XY,X中任意两顶点都不相邻,Y中任意两顶点不相邻。
完全二部图/完全偶图:X中每一顶点都与Y中的一切顶点相邻。
星: K 1 , n K_{1,n} K1,n

2. 赋权图与子图

赋权图:图的每一条边 e e e都赋予一个权值 w ( e ) w(e) w(e)
子图: V ′ ⊆ V , E ′ ⊆ E V'\subseteq V,E'\subseteq E VV,EE,称 G ′ G' G G G G的一个子图,记作 G ′ ⊆ G G'\subseteq G GG
生成子图: V ′ = V , E ′ ⊆ E V'=V,E'\subseteq E V=V,EE,称 G ′ G' G G G G的生成子图。

3. 图的矩阵表示

(1) 邻接矩阵

  1. 对于无向图
    A = ( a i j ) V × V A=(a_{ij})_{V\times V} A=(aij)V×V
    a i j = { 1 , v i 与 v j 相 邻 .     0 , v i 与 v j 不 相 邻 . a_{ij} = \left\{\begin{matrix}1,v_i与v_j相邻. \\ ~~~0,v_i与v_j不相邻. \end{matrix}\right. aij={1vivj.   0vivj.

  2. 对于有向图
    a i j = { 1 , ( v i , v j ) ∈ E , 0 , ( v i , v j ) ∉ E . a_{ij} = \left\{\begin{matrix}1,(v_i,v_j)\in E, \\ 0,(v_i,v_j)\notin E. \end{matrix}\right. aij={1(vi,vj)E,0(vi,vj)/E.
    行指向列

  3. 对于有向赋权图
    a i j = { w i j , ( v i , v j ) ∈ E , 0 , i = j , ∞ , ( v i , v j ) ∉ E . a_{ij} = \left\{\begin{matrix}w_{ij},(v_i,v_j)\in E, \\0,i=j, \\ \infty,(v_i,v_j)\notin E. \end{matrix}\right. aij=wij(vi,vj)E,0i=j,,(vi,vj)/E.

(2) 关联矩阵

  1. 对于无向图
    M = ( m i j ) ν × ε M = (m_{ij})_{\nu \times \varepsilon} M=(mij)ν×ε
    m i j = { 1 , v i 与 e j 相 关 联 0 , v i 与 e j 不 关 联 . m_{ij} = \left\{\begin{matrix}1,v_i与e_j相关联 \\ 0,v_i与e_j不关联. \end{matrix}\right. mij={1viej0viej.在这里插入图片描述

竖着写点,横着写边

  1. 对于有向图
    M = ( m i j ) ν × ε M = (m_{ij})_{\nu \times \varepsilon} M=(mij)ν×ε
    a i j = { 1 , v i 是 e j 的 尾 , − 1 , v i 是 e j 的 头 , 0 , v i 不 是 e j 的 头 与 尾 . a_{ij} = \left\{\begin{matrix}1,v_i是e_j的尾, \\-1,v_i是e_j的头, \\ 0,v_i不是e_j的头与尾. \end{matrix}\right. aij=1viej,1viej,0,viej.
    在这里插入图片描述

4. 图的顶点度

对于无向图
度/次数:与顶点 ν \nu ν关联的边的数目(环算两次)。
奇点:度为奇数的点。
偶点:度为偶数的点。

对于有向图
出度 d + ( v ) d^+(v) d+(v):从顶点引出的边的数目。
入度 d − ( v ) d^-(v) d(v):从顶点引入的边的数目。
度\次数 d ( v ) d(v) d(v) d ( v ) = d + ( v ) + d − ( v ) d(v) = d^+(v)+d^-(v) d(v)=d+(v)+d(v)
∑ d ( v ) = 2 ε \sum d(v) = 2\varepsilon d(v)=2ε

5. 路和连通

(1) 对于无向图

通道/链/途径: W = v 0 e 1 v 1 e 2 ⋅ ⋅ ⋅ e k v k W = v_0e_1v_1e_2···e_kv_k W=v0e1v1e2ekvk。顶点和边交替出现。

长: k k k
起点: v 0 v_0 v0
终点: v k v_k vk
内部顶点: v 1 , v 2 , ⋅ ⋅ ⋅ , v k − 1 v_1,v_2,···,v_{k-1} v1,v2,,vk1

迹/简单链:W的边互不相同但顶点可重复。

路径:W的顶点和边均不相同。

P ( v 0 , v k ) P(v_0,v_k) P(v0,vk):起点为 v 0 v_0 v0,终点为 v k v_k vk的路

节:途径W中的一部分。 v i e i + 1 ⋅ ⋅ ⋅ e j v j v_ie_{i+1}···e_jv_j viei+1ejvj

闭途径:起点和种点重合的途径。

圈:起点和终点重合的路。
k 阶 圈 k阶圈 k:长为k的圈。

连通:存在 ( u , v ) (u,v) (u,v)路,则 u , v u,v u,v两点连通。
距离:连通两点之间的最短距离。加权。

连通图:任意两点都连通的图。

(2) 对于有向图

有向途径:
有向迹
有向路
有向圈

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值