本篇将分享关于叉积相关内容
叉积/乘
在计算向量v、w叉乘时,我们通常是引入一个i、j、k与向量v、w组成一个3 x 3的矩阵,然后计算这个矩阵的行列式,得到的带有i、j、k的一个向量。为了方便后面的理解这里在几何上有一个不太严谨的理解:我们可以计算得到以向量v、w为临边的平行四边形的有向面积(这里计算的面积依然有方向性,满足右手定则面积符号为正),把这个理解为向量v、w的“叉积”(此叉积并非常见的三维向量的叉积)。(以上这句话仅在二维平面内适用)
你有没有想过为什么要这样计算向量叉乘呢?接下来解释一下为什么计算时要引入i、j、k。
由前面的对偶性部分可知,这个变换过程存在唯一的一个向量使得应用线性变换与这个向量做点积是一样的。二维空间中计算向量叉积的方法是将两个向量作为矩阵的两列,然后计算行列式,几何上这样得到了两个向量张成的平行四边形的面积还可能出现负值,符号取决于两个向量的位置。同理,我们假设三维向量叉积的计算方法有三个向量组成矩阵,然后计算行列式,在行列式的几何意义部分可以得到,三维行列式的几何意义就是以这三个向量为棱构成的平行六面体的体积(这个体积是相对于单位立方体的缩放比例)符号取决于三个向量是否满足右手定则。
而我们知道,叉积的结果是一个向量而不是一个数,但是已经十分接近真实的叉积了。将第一列向量u看做可变向量,v、w保持不变,这时候就得到了一个输入一个向量u输出平行六面体体积的函数。
这时可以发现,这个线性变换的输出空间是一维的,由对偶性可知存在一个1x3的矩阵可以代表这个变换。将矩阵转置得到对偶向量P,把整个变换看做与这个向量的点积并且与矩阵行列式一起计算出来的每一项对应相等,P的坐标对应向量v、w的坐标的特定组合,这时不难发现,做题时添加的i、j、k不过是用于提醒我们把这些特定的组合看为一个向量的坐标(xyz的作用等同于ijk)。
以上的这些都是在回答 “向量P与某个向量u点乘时,所得结果等于一个3x3矩阵的行列式,第一列是向量u,后两列是向量v和w。什么样的向量P可以满足这一等式?”这一问题。
接下来用几何再次解释这个问题,先来看P点乘向量u,几何意义是将向量u投影到P上,将投影长度乘以P的长度。然后思考u、v、w形成的平行六面体体积的表示方法,可以这样,用v、w形成的平行四边形的面积乘以u在垂直于v、w方向上的分量。换句话说,上面得到的函数的作用是将u向量投影到垂直于v和w的直线上,然后将投影长度与v、w张成的平行四边形的面积相乘从而求得平行六面体体积。这个过程与垂直于v与w且长度为平行四边形面积的向量与u点乘是一回事。因此得到了P就是v与w的叉积。
首先,定义一个三维空间到数轴的特定的线性变换,这个线性变换与向量v、w有关。然后,找到该线性变换的对偶向量,这个对偶向量就是v和w的叉积。这一段就是对上面过程的总结。
ps:当年第一次应用向量叉乘是在高中物理上,学会向量叉乘的原理后,在判断洛伦兹力、电流方向之类的题目无需考虑什么“左力右电”,只用右手不动脑子直接“秒杀”,它在高中物理的做题中帮助巨大。
如果我的表述存在问题或者你也有自己的看法,欢迎大家在评论区讨论!