十进制与P进制转化

本文详细介绍了P进制转十进制和十进制转P进制的两种方法:整数部分通过不断除P取余,小数部分通过不断乘P取整。提供了证明过程和注意事项。
摘要由CSDN通过智能技术生成

一:P进制转十进制

P进制转十进制由定义可知为按照权值展开即可:

                                     (a_{n}a_{n - 1}\cdot \cdot \cdot a_{1}a_{0}.a_{ - 1}a_{ - 2}\cdot \cdot \cdot a_{ - m})_{10}

                                =(A_{v}A_{v-1}\cdot \cdot \cdot A_{0}.A_{-1}\cdot \cdot \cdot A_{-u})_{p}

                                =\sum_{k=-u}^{v}p^{k}A_{k}

二:十进制转P进制

(一)整数部分

【方法】不断除P取余数

【证明】

由P进制转十进制可知:

                                             (a_{n}a_{n-1}\cdot \cdot \cdot a_{1}a_{0})_{10}

                                        =(A_{v}A_{v-1}\cdot \cdot \cdot A_{1}A_{0} )_{p}

                                ​​​​​​​        =p^{v}A_{v}+p^{v-1}A_{v-1}+\cdot \cdot \cdot +p^{1}A_{1}+p^{0}A_{0}

则有:

                (a_{n}a_{n-1}\cdot \cdot \cdot a_{1}a_{0})_{10}  \equiv  p^{v}A_{v}+p^{v-1}A_{v-1}+\cdot \cdot \cdot +p^{1}A_{1}+p^{0}A_{0}  mod  p

                p^{v}A_{v}+p^{v-1}A_{v-1}+\cdot \cdot \cdot +p^{1}A_{1}+p^{0}A_{0}  \equiv  A_{0} mod  p

所以:      (a_{n}a_{n-1}\cdot \cdot \cdot a_{1}a_{0})_{10}  \equiv  A_{0} mod  p

即:                              ​​​​​​​        (a_{n}a_{n-1}\cdot \cdot \cdot a_{1}a_{0})_{10}

        ​​​​​​​                                =(p^{v-1}A_{v}+p^{v-2}A_{v-1}+\cdot \cdot \cdot +A_{1})p+A_{0}

        ​​​​​​​                                =X_{1}p+A_{0}

其中:                        X_{1}=p^{v-1}A_{v}+p^{v-2}A_{v-1}+\cdot \cdot \cdot +A_{1}

通过对十进制数除 p 取余的方法得到最低位 A_{0}

接下来同样的方法处理X_{1},对X_{1}除 p 取余的方法得到最低位 A_{1}

不断重复:

        ​​​​​​​        ​​​​​​​                        ​​​​​​​        X_{1}=X_{2}p+A_{1}

        ​​​​​​​        ​​​​​​​                        ​​​​​​​        X_{2}=X_{3}p+A_{2}

        ​​​​​​​        ​​​​​​​                        ​​​​​​​        \cdot \cdot \cdot \cdot \cdot \cdot

        ​​​​​​​        ​​​​​​​        ​​​​​​​                        X_{v-1}=X_{v}p+A_{v-1}

        ​​​​​​​        ​​​​​​​        ​​​​​​​                        X_{v}=A_{v}        

进而求得:        ​​​​​​​             ​​​​​​​        (A_{v}A_{v-1}\cdot \cdot \cdot A_{1}A_{2})_{p}

(二)小数部分

【方法】不断乘P取整数

【证明】

与整数部分同理,有:

                              ​​​​​​​        (0.a_{-1}a_{-2}\cdot \cdot \cdot a_{-m})_{10}

                                 =(0.A_{-1}A_{-2}\cdot \cdot \cdot A_{-u})_{p}

        ​​​​​​​                        =p^{-1}A_{-1}+p^{-2}A_{-2}+\cdot \cdot \cdot +p^{-u}A_{-u}

同时乘以P:

        ​​​​​​​        ​​​​​​​                       (0.a_{-1}a_{-2}\cdot \cdot \cdot a_{-m})_{10}p

        ​​​​​​​        ​​​​​​​                =A_{-1}+p^{-1}A_{-2}+p^{-2}A_{-3}+\cdot \cdot \cdot +p^{-u+1}A_{-u}

        ​​​​​​​        ​​​​​​​                =A_{-1}+(p^{-1}A_{-2}+p^{-2}A_{-3}+\cdot \cdot \cdot +p^{-u+1}A_{-u})

        ​​​​​​​        ​​​​​​​                =A_{-1}+Y_{-1}

其中:                Y_{-1}=p^{-1}A_{-2}+p^{-2}A_{-3}+\cdot \cdot \cdot +p^{-u+1}A_{-u}

通过对十进制数乘以  p 再取整数部分得到最高位 A_{-1}

接下来同样的方法处理Y_{-1},对Y_{-1}乘 p 取整数部分的方法得到最高位 A_{-2}

不断重复:

        ​​​​​​​        ​​​​​​​        ​​​​​​​                        Y_{-1}p=A_{-2}+Y_{-2}

        ​​​​​​​        ​​​​​​​        ​​​​​​​                        Y_{-2}p=A_{-3}+Y_{-3}

                                                \cdot \cdot \cdot \cdot \cdot \cdot

        ​​​​​​​        ​​​​​​​        ​​​​​​​                        Y_{-u+1}p=A_{-u}+Y_{-u}

进而求得:        ​​​​​​​                     (0.A_{-1}A_{-2}\cdot \cdot \cdot A_{-u})_{p}

注意

Y_{i}< 1是成立的,所以整数部分一定是A_{j}

②小数部分Y_{-u}若不为0可以继续向后求解,所以常常保留有限位数

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

比鲁斯喵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值