SWUST OJ 86题:杨辉三角形


题目

提到杨辉三角形.大家应该都很熟悉.这是我国宋朝数学家杨辉在公元1261年著书《详解九章算法》提出的。 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 我们不难其规律: S1:这些数排列的形状像等腰三角形,两腰上的数都是1 S2:从右往左斜着看,第一列是1,1,1,1,1,1,1;第二列是,1,2,3,4,5,6;第三列是1,3,6,10,15;第四列是1,4,10,20;第五列是1,5,15;第六列是1,6……。 从左往右斜着看,第一列是1,1,1,1,1,1,1;第二列是1,2,3,4,5,6……和前面的看法一样。我发现这个数列是左右对称的。 S3:上面两个数之和就是下面的一行的数。 S4:这行数是第几行,就是第二个数加一。…… 现在要求输入你想输出杨辉三角形的行数n; 输出杨辉三角形的前n行.

输入

输入你想输出杨辉三角形的行数n(n<=20);当输入0时程序结束.

输出

对于每一个输入的数,输出其要求的三角形.每两个输出数中间有一个空格.每输完一个三角形换行.

样例输入

5
7
0

样例输出

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1


代码

#include <stdio.h>

int main()
{
	int n;
	while (scanf("%d", &n) != EOF)
	{
		if (n == 0)
		{
			break;
		}

		int i1, i2, j1, j2;
		int a[25][25] = { 0 };
		for (i1 = 0;i1 < n;i1++)
		{
			for (i2 = 0;i2 <= i1;i2++)
			{
				if (i2 == 0)
				{
					a[i1][i2] = 1;
				}
				else if (i2 == i1)
				{
					a[i1][i2] = 1;
				}
			/*	else if (i2 == 1 && i1 > 1)
				{
					a[i1][i2] = i1;
				}
				else if (i2 == i1 - 1 && i1 > 2)
				{
					a[i1][i2] = i1;
				}*/
				else
				{
					a[i1][i2] = a[i1 - 1][i2] + a[i1 - 1][i2 - 1];
				}
			}
		}

		int ret;
		for (i1 = 0;i1 < n;i1++)
		{
			ret = i1;
			for (i2 = 0;i2 <= i1;i2++)
			{
				printf("%d", a[i1][i2]);
				if (ret > 0)
				{
					printf(" ");
					ret--;
				}
			}
			printf("\n");

		}

	}
	return 0;
}

题目分析

我们可以观察到杨辉三角形的第一个和最后一个都是1,第二个与倒数第二个数相同,以此类推,而且每行的个数与行数相同,仔细观察可以发现,从第三行开始,第四行的第二个数是上一行第二个数和第一个数的和,第三个数
是上一行的第三个数和第二个数的和以此类推,直至最后一个。

代码分析

		int i1, i2, j1, j2;
		int a[25][25] = { 0 };
		for (i1 = 0;i1 < n;i1++)
		{
			for (i2 = 0;i2 <= i1;i2++)//杨辉三角形第几行就有几个数;
			{
				if (i2 == 0)
				{
					a[i1][i2] = 1;
				}
				else if (i2 == i1)
				{
					a[i1][i2] = 1;
				}
				//此处两段判断语句用于判断首尾的特殊情况;
				else if (i2 == 1 && i1 > 1)
				{
					a[i1][i2] = i1;
				}
				//由于我发现用数组来做行时,每一行的第二个数刚好为数组里对应的行数;
				else if (i2 == i1 - 1 && i1 > 2)
				{
					a[i1][i2] = i1;
				}
				其实此处两个判断都多余了,只需最后这个和开都两个即可;
				else
				{
					a[i1][i2] = a[i1 - 1][i2] + a[i1 - 1][i2 - 1];
				}
			}
		}

此处我用到了二维数组,这样比较便于后续操作(因为杨辉三角形后面需要用到不同行的加法,故此处用二维数组便可以和好的解决加法问题)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大海眷恋的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值