题目
提到杨辉三角形.大家应该都很熟悉.这是我国宋朝数学家杨辉在公元1261年著书《详解九章算法》提出的。 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 我们不难其规律: S1:这些数排列的形状像等腰三角形,两腰上的数都是1 S2:从右往左斜着看,第一列是1,1,1,1,1,1,1;第二列是,1,2,3,4,5,6;第三列是1,3,6,10,15;第四列是1,4,10,20;第五列是1,5,15;第六列是1,6……。 从左往右斜着看,第一列是1,1,1,1,1,1,1;第二列是1,2,3,4,5,6……和前面的看法一样。我发现这个数列是左右对称的。 S3:上面两个数之和就是下面的一行的数。 S4:这行数是第几行,就是第二个数加一。…… 现在要求输入你想输出杨辉三角形的行数n; 输出杨辉三角形的前n行.
输入
输入你想输出杨辉三角形的行数n(n<=20);当输入0时程序结束.
输出
对于每一个输入的数,输出其要求的三角形.每两个输出数中间有一个空格.每输完一个三角形换行.
样例输入
5
7
0
样例输出
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
代码
#include <stdio.h>
int main()
{
int n;
while (scanf("%d", &n) != EOF)
{
if (n == 0)
{
break;
}
int i1, i2, j1, j2;
int a[25][25] = { 0 };
for (i1 = 0;i1 < n;i1++)
{
for (i2 = 0;i2 <= i1;i2++)
{
if (i2 == 0)
{
a[i1][i2] = 1;
}
else if (i2 == i1)
{
a[i1][i2] = 1;
}
/* else if (i2 == 1 && i1 > 1)
{
a[i1][i2] = i1;
}
else if (i2 == i1 - 1 && i1 > 2)
{
a[i1][i2] = i1;
}*/
else
{
a[i1][i2] = a[i1 - 1][i2] + a[i1 - 1][i2 - 1];
}
}
}
int ret;
for (i1 = 0;i1 < n;i1++)
{
ret = i1;
for (i2 = 0;i2 <= i1;i2++)
{
printf("%d", a[i1][i2]);
if (ret > 0)
{
printf(" ");
ret--;
}
}
printf("\n");
}
}
return 0;
}
题目分析
我们可以观察到杨辉三角形的第一个和最后一个都是1,第二个与倒数第二个数相同,以此类推,而且每行的个数与行数相同,仔细观察可以发现,从第三行开始,第四行的第二个数是上一行第二个数和第一个数的和,第三个数
是上一行的第三个数和第二个数的和以此类推,直至最后一个。
代码分析
int i1, i2, j1, j2;
int a[25][25] = { 0 };
for (i1 = 0;i1 < n;i1++)
{
for (i2 = 0;i2 <= i1;i2++)//杨辉三角形第几行就有几个数;
{
if (i2 == 0)
{
a[i1][i2] = 1;
}
else if (i2 == i1)
{
a[i1][i2] = 1;
}
//此处两段判断语句用于判断首尾的特殊情况;
else if (i2 == 1 && i1 > 1)
{
a[i1][i2] = i1;
}
//由于我发现用数组来做行时,每一行的第二个数刚好为数组里对应的行数;
else if (i2 == i1 - 1 && i1 > 2)
{
a[i1][i2] = i1;
}
其实此处两个判断都多余了,只需最后这个和开都两个即可;
else
{
a[i1][i2] = a[i1 - 1][i2] + a[i1 - 1][i2 - 1];
}
}
}
此处我用到了二维数组,这样比较便于后续操作(因为杨辉三角形后面需要用到不同行的加法,故此处用二维数组便可以和好的解决加法问题)