✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球能源结构的转型和对可再生能源需求的日益增长,海上风电凭借其资源丰富、风力稳定等优势,逐渐成为清洁能源领域的重要组成部分。然而,海上风电的间歇性和波动性给电网的稳定运行带来了挑战。本文以新型海上风电机组为研究对象,探讨其与压缩空气储能(Compressed Air Energy Storage, CAES)系统相结合的建模与控制策略。首先,对新型海上风电机组进行详细建模,包括气动模型、机械传动模型以及发电机模型,并分析其运行特性。其次,深入研究压缩空气储能系统的工作原理,建立其热力学模型和控制模型。最后,设计协调控制策略,实现风电机组和压缩空气储能系统的协同优化运行,以提高风电场的并网可靠性和经济效益。
关键词: 海上风电,风电机组建模,压缩空气储能,控制策略,可再生能源
1. 引言
全球气候变化和能源危机日益严峻,推动了各国对可再生能源的开发与利用。风能作为一种清洁、可再生的能源,在全球能源结构转型中发挥着越来越重要的作用。与陆上风电相比,海上风电具有风速更高、风力更稳定、土地资源占用少等优势,因此近年来得到了迅速发展。然而,海上风电的间歇性和波动性给电网的稳定运行带来了严峻挑战。风力发电功率的波动会影响电网的频率和电压稳定性,甚至可能导致电网的崩溃。
为了解决海上风电的并网问题,储能技术被认为是有效的解决方案之一。储能技术能够平滑风电的输出功率,提高电网的稳定性,并实现风电的灵活调度。压缩空气储能(CAES)是一种成熟且具有潜力的大规模储能技术,其利用压缩空气将电能转化为势能储存起来,并在需要时通过膨胀做功释放能量。将海上风电机组与压缩空气储能系统相结合,可以有效提高风电的利用率和并网可靠性,并降低对电网的影响。
因此,本文以新型海上风电机组为研究对象,探讨其与压缩空气储能系统相结合的建模与控制策略。通过建立精确的风电机组模型和压缩空气储能系统模型,并设计合理的控制策略,实现风电机组和压缩空气储能系统的协同优化运行,以提高风电场的并网可靠性和经济效益。
2. 新型海上风电机组建模
为了研究风电机组的运行特性,需要建立精确的风电机组模型。风电机组模型主要包括气动模型、机械传动模型和发电机模型。
2.1 气动模型
气动模型描述了风轮叶片从风中捕获能量的过程。风轮捕获的风能功率可以表示为:
P_wind = 1/2 * ρ * A * v^3 * C_p(λ, β)
其中:
-
P_wind:风轮捕获的风能功率;
-
ρ:空气密度;
-
A:风轮扫掠面积;
-
v:风速;
-
C_p(λ, β):风能利用系数,是叶尖速比λ和桨距角β的函数。
叶尖速比λ定义为:
λ = (ω * R) / v
其中:
-
ω:风轮转速;
-
R:风轮半径。
风能利用系数C_p(λ, β)是一个非线性函数,其值取决于叶片的几何形状和风轮的运行状态。通常可以通过查表或拟合公式来确定C_p(λ, β)的值。
2.2 机械传动模型
机械传动模型描述了风轮的机械能传递到发电机转子的过程。机械传动系统主要包括齿轮箱和连接轴。齿轮箱的作用是将风轮的低转速转换为发电机的高转速。机械传动系统的动态方程可以表示为:
J_total * dω_g/dt = T_m - T_g - B_total * ω_g
其中:
-
J_total:机械传动系统的总转动惯量;
-
ω_g:发电机转速;
-
T_m:机械扭矩,由风轮传递到齿轮箱;
-
T_g:发电机扭矩;
-
B_total:机械传动系统的总阻尼系数。
2.3 发电机模型
发电机模型描述了将机械能转换为电能的过程。根据发电机类型的不同,可以使用不同的数学模型。常用的发电机类型包括双馈感应发电机(Doubly-fed Induction Generator, DFIG)和永磁同步发电机(Permanent Magnet Synchronous Generator, PMSG)。
对于DFIG,可以使用五阶模型来描述其动态特性。该模型包括定子电压方程、定子磁链方程、转子电压方程、转子磁链方程以及机械运动方程。通过控制转子电流,可以实现对发电功率和电网电压的独立控制。
对于PMSG,可以使用二阶模型来描述其动态特性。该模型包括d轴电压方程、q轴电压方程以及机械运动方程。通过控制逆变器的电压和电流,可以实现对发电功率和电网电压的独立控制。
3. 压缩空气储能系统建模
压缩空气储能系统主要包括压缩机、储气罐、膨胀机和电机/发电机。在储能阶段,压缩机将空气压缩并储存在储气罐中。在发电阶段,高压空气通过膨胀机做功,驱动发电机发电。
3.1 热力学模型
压缩和膨胀过程的热力学模型是CAES系统建模的关键。常用的热力学模型包括等温过程模型、绝热过程模型和多变过程模型。
- 等温过程模型:
假设压缩和膨胀过程始终保持恒温。该模型简化了计算,但精度较低。
- 绝热过程模型:
假设压缩和膨胀过程没有热量交换。该模型适用于快速压缩和膨胀过程。
- 多变过程模型:
考虑了实际压缩和膨胀过程中的热量交换。该模型精度较高,但计算复杂。
实际应用中,需要根据CAES系统的具体工况选择合适的热力学模型。
3.2 控制模型
CAES系统的控制模型主要包括压缩机控制模型、膨胀机控制模型和储气罐压力控制模型。
- 压缩机控制模型:
通过控制压缩机的进气流量和转速,可以控制压缩空气的压力和流量。
- 膨胀机控制模型:
通过控制膨胀机的进气流量和喷嘴开度,可以控制膨胀机的输出功率和效率。
- 储气罐压力控制模型:
通过控制压缩机和膨胀机的运行,可以保持储气罐的压力在合适的范围内。
4. 风电机组与压缩空气储能系统的协调控制策略
为了实现风电机组和压缩空气储能系统的协同优化运行,需要设计合理的协调控制策略。控制目标包括:
- 平滑风电输出功率:
减少风电波动对电网的影响,提高电网的稳定性。
- 提高风电利用率:
将过剩的风电能量储存起来,并在需要时释放出来,减少风电的弃风率。
- 优化CAES系统运行:
提高CAES系统的效率和经济效益。
常用的协调控制策略包括:
- 功率跟踪控制:
CAES系统跟踪风电场的输出功率,平滑风电波动。
- 频率调节控制:
CAES系统参与电网频率调节,提高电网的频率稳定性。
- 经济调度控制:
CAES系统根据电网的电价和负荷需求,优化自身的运行,实现经济效益的最大化。
例如,一种典型的功率跟踪控制策略如下:
- 功率预测:
利用历史数据和气象预报,对未来一段时间的风电输出功率进行预测。
- 功率设定:
根据预测的风电输出功率和电网的需求,设定CAES系统的充放电功率。
- 控制执行:
CAES系统根据设定的充放电功率,调节压缩机和膨胀机的运行,实现功率跟踪。
5. 仿真与结果分析
为了验证所提出的建模与控制策略的有效性,需要进行仿真分析。可以使用Matlab/Simulink等仿真软件搭建风电机组和CAES系统的模型,并模拟其运行过程。
仿真结果可以用于评估控制策略的性能,例如:
-
风电输出功率的平滑程度;
-
风电利用率的提高程度;
-
CAES系统的运行效率;
-
电网的频率和电压稳定性。
通过对仿真结果的分析,可以进一步优化控制策略,提高风电场的并网可靠性和经济效益。
6. 结论
本文对新型海上风电机组及压缩空气储能系统的建模与控制进行了研究。首先,建立了精确的风电机组模型和压缩空气储能系统模型。其次,设计了协调控制策略,实现了风电机组和压缩空气储能系统的协同优化运行。仿真结果表明,所提出的建模与控制策略能够有效平滑风电输出功率,提高风电利用率,并提高电网的稳定性。
⛳️ 运行结果
🔗 参考文献
[1] 王磊.海上风电机组系统动力学建模及仿真分析研究[D].重庆大学,2011.
[2] 余思贤,周允康,刘雷伟,等.海上风电-水下压缩空气储能系统建模及经济性分析[J].综合智慧能源, 2022, 44(10):71-82.DOI:10.3969/j.issn.2097-0706.2022.10.010.
[3] 朱宇翀.海上风电主动调频和故障穿越策略研究[D].江苏大学,2022.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇