【用于高效、高精度热力学计算的计算包括( H2、paraH2、orthoH2、N2、O2、Ar、H2O 和 CO2)

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

热力学计算是工程设计、化学反应模拟、能源转化效率分析等领域不可或缺的关键工具。精确而高效的热力学计算不仅能够为系统性能预测提供可靠依据,还能指导优化设计,提高资源利用率。然而,真实的热力学过程往往涉及多组分混合物,每个组分的性质都会对整体系统的行为产生重要影响。因此,选择合适且具有代表性的组分对于获得准确、高效的计算结果至关重要。本文将深入探讨在高效、高精度热力学计算中,选择包括氢气(H2)、仲氢(paraH2)、正氢(orthoH2)、氮气(N2)、氧气(O2)、氩气(Ar)、水(H2O)和二氧化碳(CO2)这些特定组分的必要性,并分析其在不同应用场景下的影响。

氢气(H2)作为一种清洁、高效的能源载体,在燃料电池、氢内燃机、化工合成等领域拥有广泛的应用前景。在涉及氢气的热力学计算中,简单地将H2视为单一组分往往会忽略其内在的量子力学特性。室温及以上时,H2主要以电子基态存在,但其分子振动和转动能级量子化,且转动能级受到自旋异构体的强烈影响。因此,区分正氢(orthoH2)和仲氢(paraH2)对于精确的热力学计算至关重要。

正氢和仲氢是氢分子的两种自旋异构体,其核自旋方向分别为平行和反平行。由于核自旋态不同,两种异构体的转动能级和相应的热力学性质(如热容、焓、熵)存在显著差异,特别是在低温下。在低温环境中,仲氢占据主导地位,因此在液氢的储存、运输和使用过程中,正仲氢之间的平衡转化过程及其对液氢蒸发率的影响必须加以考虑。在高温下,正氢和仲氢的平衡比例接近3:1,因此在高溫氫氣反应中,也需要考虑其热力学性质的差异。忽略正仲氢的区别会导致热力学计算结果出现偏差,影响反应平衡常数的准确性,甚至可能导致错误的结论。因此,在涉及氢气的热力学计算中,根据温度范围和应用场景,选择是否单独考虑正氢和仲氢组分,是确保计算精度的关键步骤。对于高精度计算,必须分别输入正氢和仲氢的热力学参数,例如热容多项式系数,或者采用基于量子力学原理的统计热力学模型来计算它们的性质。

氮气(N2)和氧气(O2)是大气的主要组成部分,在涉及燃烧、气体分离、大气环境模拟等领域的热力学计算中,它们扮演着至关重要的角色。精确描述N2和O2的热力学性质,需要考虑到它们在高温下的解离和激发态。在高温下,N2和O2分子会发生解离,生成氮原子(N)和氧原子(O)。解离反应会吸收大量能量,降低系统的温度,影响反应平衡。此外,高温下N2和O2分子还会被激发到电子激发态,激发态的能量对热力学性质也有贡献。因此,在高溫燃燒模型中,必须考虑N2和O2的解离和激发态,才能准确预测火焰温度、组分浓度和燃烧效率。忽略这些因素会导致计算结果与实验数据之间存在显著差异。

氩气(Ar)是一种惰性气体,其化学性质稳定,常被用作保护气体、冷却剂和校准气体。在热力学计算中,Ar通常被视为理想气体,其热力学性质可以通过简单的公式进行计算。然而,在高压或低温条件下,Ar的理想气体行为会发生偏差,需要采用更复杂的状态方程(如Virial方程、Peng-Robinson方程)进行修正。此外,Ar的同位素效应也可能对其热力学性质产生微小影响,但通常可以忽略不计。

水(H2O)是自然界中最常见的物质之一,在化工、能源、环境等领域具有广泛的应用。H2O的热力学性质非常复杂,因为它能够以气态、液态和固态三种形态存在,且不同形态的热力学性质差异很大。此外,H2O分子之间存在氢键作用,这使得液态水的性质非常特殊。在涉及水的热力学计算中,必须准确描述H2O在不同相态下的性质。对于气态水,可以采用理想气体或修正的状态方程进行计算。对于液态水,需要采用更复杂的模型,如链理论状态方程(SAFT)或经验公式,来考虑氢键作用的影响。此外,在模拟湿空气、蒸汽动力循环等场景时,还需要考虑水蒸气的分压和饱和蒸汽压。

二氧化碳(CO2)是一种重要的温室气体,同时也是化工、食品等行业的重要原料。在热力学计算中,CO2的热力学性质也需要精确描述。CO2分子是线性分子,其振动模式和转动模式会对热力学性质产生影响。在高溫条件下,CO2分子会发生解离,生成一氧化碳(CO)和氧气(O2),解离反应会影响燃烧过程和气体组分。此外,在涉及CO2捕集与封存(CCS)技术的热力学计算中,需要考虑CO2在高压条件下的性质,并采用合适的CO2状态方程。

综上所述,在进行高效、高精度热力学计算时,选择合适的组分和准确的热力学模型至关重要。对于涉及氢气的系统,需要根据温度和应用场景,考虑正氢和仲氢的差异。对于涉及大气组分的系统,需要考虑N2和O2的解离和激发态。对于涉及水的系统,需要准确描述水在不同相态下的性质。对于涉及CO2的系统,需要考虑CO2的分子结构和高压条件下的性质。通过合理的组分选择和优化,可以提高热力学计算的精度和效率,为工程设计和科学研究提供可靠依据。

为了提高计算效率,在保证精度的前提下,可以采取以下措施:

  • 查阅可靠的热力学数据库:

     借助NIST Chemistry WebBook, DIPPR数据库等,快速获取各组分在不同温度、压力下的热力学性质数据。

  • 使用合适的近似方法:

     对于一些次要组分,可以采用理想气体近似或者简单的热力学模型,以减少计算量。

  • 采用高效的数值计算方法:

     例如,使用矢量化计算、并行计算等技术,加速热力学计算过程。

  • 简化模型:

     在复杂的化学反应体系中,可以根据反应速率常数的大小,忽略一些反应速率较慢的反应,从而简化计算模型。

⛳️ 运行结果

🔗 参考文献

[1] 钟静芳,范伯元,程昌圻.用拖动循环热力学仿真计算确定示功图上止点位置[J].内燃机工程, 1989.

[2] 黎作武,张涵信.高超声速气动热高精度计算方法研究[C]//中国第一届近代空气动力学与气动热力学会议.中国空气动力学会, 2006.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值