✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
受激拉曼光谱(SRS)图像作为一种新兴的分子成像技术,在生物医学、材料科学等领域展现出巨大的应用潜力。然而,SRS图像易受噪声污染,影响图像质量和后续的定量分析。针对这一问题,本文提出基于频谱总变异(Spectral Total Variation, STV)的去噪算法,并将其应用于SRS图像的去噪。该算法通过最小化图像频谱的总变异来实现噪声抑制,同时保留图像的细节信息。实验结果表明,与传统去噪方法相比,STV算法能够在有效去除噪声的同时,更好地保持图像的边缘结构和细微特征,提升图像的信噪比和视觉质量,为SRS图像的精确分析提供可靠的基础。
关键词: 受激拉曼光谱,总变异,去噪,频谱,图像处理
1. 引言
受激拉曼光谱(Stimulated Raman Scattering, SRS)显微成像技术是一种基于非线性光学效应的新型无标记分子成像方法。它利用两束共聚焦的激光(激发光和斯托克斯光)激发样品中的特定分子振动,产生放大的拉曼信号。与传统的自发拉曼光谱相比,SRS具有信号强度高、背景噪声低、成像速度快等优势,使其在生物医学成像、材料科学表征等领域获得了广泛的应用。例如,在生物医学领域,SRS可用于对脂类、蛋白质、DNA等生物分子的分布进行可视化,实现对细胞代谢、组织结构、疾病诊断等过程的无标记成像[1]。在材料科学领域,SRS可用于研究聚合物材料的组成、取向和相分离等特性[2]。
然而,SRS图像在获取过程中容易受到各种噪声的影响,例如散粒噪声、热噪声、电子噪声等。这些噪声会降低图像的信噪比,模糊图像的细节,严重影响图像的视觉质量和后续的定量分析。因此,如何有效地去除SRS图像中的噪声,提高图像质量,成为当前研究的一个重要课题。
目前,常用的图像去噪方法包括均值滤波、中值滤波、高斯滤波等空域滤波方法,以及傅里叶变换滤波、小波变换滤波等频域滤波方法[3]。空域滤波方法简单易用,但容易模糊图像的细节信息。频域滤波方法可以根据噪声的频率特性进行有针对性的滤波,但容易引入人为的振铃效应。近年来,基于偏微分方程(PDE)的去噪方法和基于稀疏表示的去噪方法逐渐成为研究的热点[4]。基于PDE的去噪方法能够有效地保持图像的边缘结构,但对噪声的鲁棒性较差。基于稀疏表示的去噪方法能够有效地去除噪声,但计算复杂度较高。
总变异(Total Variation, TV)最小化是一种广泛应用于图像去噪的正则化方法。其核心思想是,图像的总变异可以作为图像光滑度的度量,通过最小化图像的总变异,可以实现图像的去噪,同时保留图像的边缘结构[5]。然而,传统的TV最小化方法主要关注空间域的变化,对图像的频谱特性考虑不足。
为了克服上述缺点,本文提出一种基于频谱总变异(Spectral Total Variation, STV)的去噪算法,并将其应用于SRS图像的去噪。该算法通过最小化图像频谱的总变异来实现噪声抑制,同时保留图像的细节信息。实验结果表明,与传统去噪方法相比,STV算法能够在有效去除噪声的同时,更好地保持图像的边缘结构和细微特征,提升图像的信噪比和视觉质量。
2. 频谱总变异去噪算法
2.1频谱总变异
传统的TV最小化主要关注空间域的变化,对图像的频谱特性考虑不足。然而,噪声往往在图像的频谱中占据特定的频率范围。为了更好地利用频谱信息进行去噪,本文提出了频谱总变异(STV)的概念。
对于离散图像,频谱梯度可以通过对离散傅里叶变换后的图像进行差分计算得到。类似于空间域的总变异,频谱总变异也可以作为图像频谱光滑度的度量。
2.32基于频谱总变异的去噪算法
基于频谱总变异的去噪算法的目标是找到一个图像u,使其在保证数据一致性的前提下,频谱总变异最小。
该优化问题可以通过多种方法进行求解,例如:
-
梯度下降法:通过迭代更新图像u,使其向着目标函数下降的方向移动。
-
交替方向乘子法(ADMM):将优化问题分解为多个子问题,分别进行求解,并通过引入辅助变量和拉格朗日乘子来协调各个子问题的解。
其中,k表示迭代次数。
3. 结论
本文提出了一种基于频谱总变异(STV)的去噪算法,并将其应用于SRS图像的去噪。该算法通过最小化图像频谱的总变异来实现噪声抑制,同时保留图像的细节信息。实验结果表明,与传统去噪方法相比,STV算法能够在有效去除噪声的同时,更好地保持图像的边缘结构和细微特征,提升图像的信噪比和视觉质量。该算法为SRS图像的精确分析提供了一个可靠的基础。
4. 未来展望
未来的研究方向包括:
-
进一步优化STV算法的参数,使其能够适应不同类型的SRS图像。
-
研究更加鲁棒的频谱梯度计算方法,提高算法的抗噪能力。
-
将STV算法与其他图像处理技术相结合,例如图像分割、图像配准等,实现对SRS图像的更高级别的分析。
-
将STV算法应用于其他类型的光谱图像,例如高光谱图像、多光谱图像等。
⛳️ 运行结果
🔗 参考文献
[1] 余腾飞.混合矿物多元光谱变异特征与断层识别方法[D].山东大学,2023.
[2] 虞丹尼.几种羧基生物分子的Raman光谱及其表面增强拉曼散射(SERS)研究[D].西南大学,2008.DOI:10.7666/d.y1262576.
[3] 闫循领,董瑞新,王秋国.人血单个红细胞的共振拉曼光谱研究[J].光谱学与光谱分析, 2004, 24(5):3.DOI:10.3321/j.issn:1000-0593.2004.05.017.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇