✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
车辆的运动与控制是现代汽车工程领域的核心研究内容。精确预测车辆在各种工况下的行为对于车辆设计、性能评估以及高级驾驶辅助系统(ADAS)和自动驾驶系统的开发至关重要。而要实现对车辆运动的准确建模,轮胎模型的选取和应用无疑是其中的关键环节。轮胎作为车辆与地面之间唯一的接触介质,其复杂的力学特性直接影响着车辆的纵向加速、制动、横向转向以及在复杂路面上的稳定性和操纵性。因此,对车辆运动学与动力学进行深入研究,绕不开对轮胎模型进行细致的探讨。
车辆的运动学描述了车辆在空间中的几何位置和姿态随时间的变化,主要关注运动的几何关系,而忽略了产生运动的力。简单的运动学模型通常将车辆视为刚体,忽略了悬架、轮胎等柔性部件的影响。然而,这种简化模型在分析高速、高侧偏角或复杂路况下的车辆行为时会产生较大的误差。车辆动力学则是在运动学的基础上,考虑了作用于车辆的各种力矩和力,通过牛顿-欧姆定律来描述车辆的运动状态。在这里,轮胎所产生的力,包括纵向力、侧向力以及回正力矩,成为决定车辆动力学响应的关键输入。
轮胎的力学特性极为复杂,它是一个由橡胶、帘线、金属等多种材料组成的复合体。轮胎与地面之间的相互作用并非简单的滑动摩擦,而是在微观上表现为复杂的粘弹性接触和局部变形。当轮胎在地面上滚动时,接触区域会发生变形,产生滑动、蠕变以及回正力矩等现象。这些复杂的力学特性使得轮胎模型成为车辆动力学建模中最具挑战性的部分之一。
纵观现有的轮胎模型,可以大致分为以下几类:
1. 经验或半经验模型 (Empirical or Semi-Empirical Models):
这类模型基于大量的实验数据,通过拟合数学函数来描述轮胎力与滑移率/侧偏角之间的关系。它们通常具有形式简单、易于理解和实现的优点,但也存在适用范围有限、对参数敏感以及无法反映物理本质等缺点。典型的经验或半经验模型包括:
- 刷子模型 (Brush Model):
这是最早的解析性轮胎模型之一,将轮胎与地面的接触区域视为一个刷子,通过刷毛的变形和滑动来模拟轮胎力。刷子模型能够定性地反映轮胎力的生成机理,但在定量精度上存在不足,尤其是在大滑移率/侧偏角工况下。尽管如此,由于其物理意义清晰,常被用于教学和概念验证。
- 魔术公式模型 (Magic Formula Model):
由Pacejka等人提出的魔术公式模型是目前应用最为广泛的轮胎模型之一。它通过一系列带有经验参数的数学函数来拟合轮胎力(纵向力、侧向力、回正力矩)与滑移率、侧偏角、垂直载荷、倾角等输入量之间的关系。魔术公式模型的优点在于其形式统一、拟合精度高,并且能够描述轮胎的非线性特性,包括峰值力、后峰值行为等。然而,其参数的物理意义不明确,需要通过大量的实验数据进行辨识,且在联合滑移(同时存在纵向滑移和侧向滑移)工况下的建模相对复杂。尽管存在这些挑战,魔术公式模型因其在车辆动力学仿真中的实用性和准确性而被广泛应用于车辆仿真软件和控制系统设计中。
- 光滑刷子模型 (Smooth Brush Model):
在刷子模型的基础上进行改进,引入了非线性的刷毛变形模型,以提高在大滑移率下的精度。
- 指数型模型 (Exponential Model):
利用指数函数来描述轮胎力与滑移率/侧偏角的关系,形式相对简单。
经验或半经验模型的优势在于其在特定工况下能够提供较高的预测精度,并且计算效率较高,适用于实时仿真和控制。然而,其最大的局限性在于对工况的依赖性强,缺乏对轮胎内部物理过程的描述,难以预测轮胎在未知或极端工况下的行为。
2. 物理模型 (Physical Models):
物理模型尝试从轮胎的物理结构和材料特性出发,通过建立力学方程来描述轮胎的力学行为。这类模型通常更加复杂,计算量也更大,但它们能够更好地反映轮胎的物理本质,具有更强的泛化能力,并且能够预测轮胎在不同结构参数和材料属性下的响应。典型的物理模型包括:
- 分布式单元模型 (Distributed Element Models):
将轮胎的接触区域离散化为一系列独立的单元,每个单元具有一定的刚度、阻尼和摩擦特性。通过对每个单元的受力进行分析,然后积分得到总的轮胎力。这类模型的精度较高,能够模拟轮胎的局部变形和滑动,但计算量巨大,不适合实时应用。
- 有限元模型 (Finite Element Models):
利用有限元方法对轮胎进行建模,可以非常详细地模拟轮胎的结构和材料特性。有限元模型能够提供非常准确的轮胎力学响应预测,常被用于轮胎的设计和性能分析。然而,其模型复杂度极高,计算耗时巨大,无法用于车辆的实时仿真和控制。
- 考虑轮胎内部振动的模型 (Models Considering Tire Internal Vibrations):
这类模型进一步考虑了轮胎在滚动过程中产生的内部振动,对于分析车辆的舒适性和噪声振动粗糙度(NVH)特性具有重要意义。
物理模型的优势在于其对轮胎物理过程的深入刻画,能够更好地预测轮胎在不同条件下的行为,并且有助于理解轮胎力产生机理。然而,其复杂度高,参数众多,计算量大,使得其实际应用受到限制。
3. 综合模型 (Combined Models):
为了兼顾精度和计算效率,一些研究将经验模型和物理模型的优点相结合,构建综合模型。例如,将简单的物理模型与经验参数相结合,或者利用物理模型来确定经验模型的参数。这种方法在一定程度上弥补了单一类型模型的不足。
轮胎模型在车辆运动学与动力学建模中的应用:
选择合适的轮胎模型对于车辆运动学与动力学建模的精度至关重要。不同的应用场景对轮胎模型的精度和计算效率有不同的要求:
- 车辆动力学仿真 (Vehicle Dynamics Simulation):
在车辆动力学仿真中,通常需要能够准确预测车辆在各种工况下的运动轨迹、姿态以及关键参数,例如侧向加速度、横摆角速度等。魔术公式模型因其精度和计算效率的平衡而成为主流选择。对于更精确的研究,可能会考虑使用更复杂的物理模型。
- 车辆控制系统设计 (Vehicle Control System Design):
例如,电子稳定控制系统(ESC)、牵引力控制系统(TCS)等主动安全系统需要实时获取或估计轮胎的力信息,并根据这些信息进行控制决策。因此,用于控制系统设计的轮胎模型必须满足实时性要求。简化的魔术公式模型或某些经验模型因其计算效率高而常被采用。同时,对轮胎力进行估计(Tire Force Estimation)也是一个重要的研究方向,通过车辆传感器数据来反推轮胎力,从而避免对复杂轮胎模型的直接依赖。
- 自动驾驶系统 (Autonomous Driving Systems):
自动驾驶系统需要对车辆的未来运动状态进行预测,并在复杂环境中进行路径规划和决策。准确的轮胎模型对于预测车辆在极限工况下的行为至关重要,例如在湿滑路面上的制动和转向。同时,对于车辆运动学预测,也需要考虑轮胎模型的非线性特性。
- 车辆设计与性能评估 (Vehicle Design and Performance Evaluation):
在车辆设计阶段,通过车辆动力学仿真可以评估不同车辆参数和控制策略对车辆性能的影响。此时,选择合适的轮胎模型能够更真实地反映车辆的实际表现。
影响轮胎模型精度的因素:
轮胎模型的精度受到多种因素的影响,包括:
- 轮胎特性参数的准确性:
无论采用哪种模型,准确的轮胎特性参数是模型精度的基础。这些参数通常需要通过实验进行测量和辨识。
- 路面特性:
路面的材料、粗糙度、湿滑程度等都会影响轮胎与地面的相互作用。理想的轮胎模型应该能够考虑路面特性的影响,例如通过引入摩擦系数模型。
- 工况范围:
大多数轮胎模型在特定的工况范围内具有较高的精度,但在超出其适用范围时可能会出现较大的误差。例如,许多模型在大侧偏角或大滑移率工况下精度会下降。
- 模型结构的复杂性:
更复杂的模型通常能够捕捉更精细的轮胎特性,但也带来了更高的计算量和参数辨识难度。
未来的发展趋势:
随着计算机技术和传感器技术的不断发展,未来的轮胎模型研究将朝着以下几个方向发展:
- 基于数据驱动的模型 (Data-Driven Models):
利用机器学习等技术,通过海量实验数据或仿真数据来构建轮胎模型,有望提高模型的预测精度和泛化能力,特别是在复杂和未知工况下。
- 考虑更多物理因素的模型:
进一步考虑轮胎的内部振动、温度效应、磨损效应等因素,从而更全面地描述轮胎的力学行为。
- 更高效的实时模型:
发展既具有较高精度又满足实时性要求的轮胎模型,以更好地应用于车辆控制和自动驾驶系统。
- 虚拟轮胎传感技术 (Virtual Tire Sensing):
通过车辆现有的传感器数据,结合车辆动力学模型和轮胎模型,实时估计轮胎的力、滑移率、侧偏角等状态,从而弥补物理传感器获取这些信息困难的不足。
结论:
车辆运动学与动力学建模是车辆工程的核心领域,而轮胎模型作为描述车辆与地面相互作用的关键环节,其重要性不言而喻。从简单的经验模型到复杂的物理模型,轮胎模型的发展历程反映了人类对轮胎力学特性认识的不断深入。在实际应用中,需要根据具体的应用场景、对精度和计算效率的要求来选择合适的轮胎模型。同时,随着技术的进步,基于数据驱动、考虑更多物理因素以及高效实时化的轮胎模型将是未来的重要发展方向。对轮胎模型进行深入研究和准确应用,不仅能够提高车辆动力学仿真的精度,更是实现高水平车辆控制和自动驾驶的关键所在。
⛳️ 运行结果
🔗 参考文献
[1] 吴碧磊.重型汽车动力学性能仿真研究与优化设计[J].吉林大学, 2008.
[2] 杜峰,闫光辉,关志伟.汽车动力学仿真中轮胎模型的建模[J].机械设计与制造工程, 2012, 41(021):33-37.
[3] 杜峰,闫光辉,关志伟.汽车动力学仿真中轮胎模型的建模[J].中国制造业信息化:学术版, 2012.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇