哈里斯鹰算法优化BP神经网络(HHO-BP)回归预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

回归预测是机器学习领域中的重要研究方向,其在金融、气象、医疗等众多领域有着广泛的应用。传统BP神经网络作为一种经典的非线性模型,在处理复杂非线性关系时表现出色,但也存在收敛速度慢、易陷入局部最优等缺点。为了克服这些不足,本文将哈里斯鹰优化算法(Harris Hawks Optimization, HHO)引入BP神经网络,提出了一种基于哈里斯鹰算法优化的BP神经网络(HHO-BP)模型,用于解决回归预测问题。哈里斯鹰优化算法是一种新兴的群体智能优化算法,具有较强的全局搜索能力。本文详细阐述了HHO-BP模型的构建过程,包括HHO算法的原理、将其应用于BP神经网络权值和阈值优化的策略。通过在多个标准回归数据集上进行实验验证,对比分析了HHO-BP模型与传统BP神经网络以及其他智能优化算法优化BP神经网络的预测性能。实验结果表明,HHO-BP模型在预测精度、收敛速度和稳定性方面均表现出显著优势,证明了哈里斯鹰算法在BP神经网络优化中的有效性,为回归预测提供了新的有效方法。

关键词:回归预测;BP神经网络;哈里斯鹰优化算法;群体智能;模型优化

1. 引言

回归预测旨在根据已知输入变量预测连续输出变量的值,其在各个学科和行业中扮演着至关重要的角色。例如,在金融领域,回归预测可用于预测股票价格、汇率走势;在气象领域,可用于预测温度、降雨量;在工业生产中,可用于预测产品质量、设备故障等。随着大数据时代的到来,数据的复杂性和非线性程度不断提高,对回归预测模型的准确性和鲁棒性提出了更高的要求。

BP神经网络(Back Propagation Neural Network)作为一种多层前馈神经网络,凭借其强大的非线性映射能力,在回归预测领域得到了广泛应用。其基本原理是通过误差反向传播算法调整网络中的权值和阈值,使得网络输出与期望输出之间的误差最小化。然而,传统的梯度下降法在训练BP神经网络时存在一些固有的问题,例如:对初始权值和阈值敏感,容易陷入局部最优解,导致网络泛化能力不足;收敛速度较慢,尤其对于大型数据集和复杂的网络结构,训练时间可能非常长。

为了克服传统BP神经网络的缺点,研究人员引入了多种优化算法来改进BP网络的性能。这些优化算法主要用于寻找最优的权值和阈值组合,以提高网络的训练效率和预测精度。常见的优化算法包括遗传算法(Genetic Algorithm, GA)、粒子群优化算法(Particle Swarm Optimization, PSO)、模拟退火算法(Simulated Annealing, SA)等。这些算法虽然取得了一定的效果,但仍然存在一些局限性,如GA易陷入局部最优、PSO易早熟收敛等。

近年来,随着仿生智能算法的不断涌现,一些新兴的群体智能优化算法因其良好的全局搜索能力和寻优性能,被应用于BP神经网络的优化。哈里斯鹰优化算法(Harris Hawks Optimization, HHO)是于2019年提出的一种模拟哈里斯鹰捕食行为的新型群体智能优化算法。该算法模拟了哈里斯鹰在不同情境下采取的多种捕食策略,包括探索阶段和开发阶段,具有较强的全局搜索和局部开发能力,且参数相对较少,易于实现。

基于HHO算法的优越性,本文提出将HHO算法应用于BP神经网络的权值和阈值优化,构建HHO-BP回归预测模型。通过利用HHO算法的全局搜索能力,寻找BP神经网络的最优权值和阈值,从而克服传统BP网络的局部最优问题,提高网络的收敛速度和预测精度。本文旨在深入研究HHO-BP模型在回归预测问题中的应用,并对其性能进行全面评估。

2. BP神经网络原理

BP神经网络是一种具有输入层、隐藏层和输出层的多层前馈神经网络。其核心思想是误差反向传播和梯度下降。

网络结构

BP神经网络由多个神经元组成,这些神经元通过带有权重的连接相互连接。信息从输入层向前传播到隐藏层,再到输出层。每个神经元接收来自上一层神经元的输入,经过激活函数处理后产生输出。常见的激活函数包括Sigmoid、ReLU、Tanh等。

3. 哈里斯鹰优化算法(HHO)

哈里斯鹰优化算法(HHO)是一种受哈里斯鹰合作捕食行为启发的元启发式算法。该算法模拟了哈里斯鹰在追捕猎物过程中的不同策略,包括探索、包围和突袭。

3.1 算法基本原理

HHO算法将种群中的每个个体视为一只哈里斯鹰,猎物视为待求解问题的最优解。算法迭代进行,每一轮迭代中,每只哈里斯鹰根据当前环境(即猎物的逃跑能量)和种群中其他个体的表现来更新自己的位置。

3.2 探索阶段

在探索阶段,哈里斯鹰在广阔的区域内搜索猎物。这个阶段模拟了HHO算法的全局搜索能力。哈里斯鹰根据两个不同的策略进行搜索,并以一定的概率选择其中一种:

策略1:根据种群中随机选择的其他哈里斯鹰的位置更新自身位置。

3.3 开发阶段

在发现猎物后,哈里斯鹰进入开发阶段,进行围捕和突袭。开发阶段的策略选择取决于猎物的逃跑能量EE和随机跳跃强度JJ。

3.4 HHO算法的优势

与传统的优化算法相比,HHO算法具有以下优势:

  • 良好的平衡性:

    HHO算法通过探索和开发阶段的切换,在全局搜索和局部开发之间取得了较好的平衡。

  • 参数较少:

    HHO算法的主要参数是种群规模和最大迭代次数,相对其他算法参数较少,易于调节。

  • 收敛速度快:

    HHO算法在许多优化问题上表现出较快的收敛速度。

4. 哈里斯鹰算法优化BP神经网络(HHO-BP)模型构建

本文将HHO算法应用于BP神经网络的权值和阈值优化,构建HHO-BP回归预测模型。其核心思想是将BP神经网络的权值和阈值作为一个整体,编码成HHO算法中哈里斯鹰的位置向量。HHO算法的目标函数是BP神经网络在训练集上的预测误差,即最小化预测值与真实值之间的均方根误差(RMSE)或均方误差(MSE)。

4.1 HHO-BP模型的流程

HHO-BP模型的构建和训练过程如下:

  1. 初始化BP神经网络结构:确定网络的输入层、隐藏层和输出层的神经元数量。输入层神经元数量等于输入变量的个数,输出层神经元数量等于输出变量的个数。隐藏层神经元数量通常需要通过经验或实验确定。

  2. 编码权值和阈值:将BP神经网络中所有的权值和阈值连接起来,形成一个长的向量。这个向量的长度决定了HHO算法中哈里斯鹰的位置向量的维度。

  3. 初始化HHO算法参数:设置HHO算法的种群规模、最大迭代次数等参数。随机初始化哈里斯鹰的初始位置(即BP神经网络的初始权值和阈值)。

  4. 计算适应度值:对于HHO种群中的每个个体(每只哈里斯鹰),将其位置向量解码为BP神经网络的权值和阈值。使用该BP神经网络在训练集上进行预测,计算预测误差(如RMSE),并将预测误差作为该个体的适应度值。适应度值越小,表示该个体对应的BP神经网络性能越好。

  5. 更新哈里斯鹰位置:根据HHO算法的探索和开发策略,更新每只哈里斯鹰的位置。更新过程中,哈里斯鹰会根据当前最优解(适应度值最小的个体)和自身位置来调整搜索方向和步长。

  6. 迭代优化:重复步骤4和步骤5,直到达到最大迭代次数或满足其他停止条件。在迭代过程中,HHO算法会不断寻找更优的权值和阈值组合,使得BP神经网络的预测误差逐渐减小。

  7. 获取最优解:迭代结束后,HHO算法会找到一个最优的哈里斯鹰位置,该位置对应着BP神经网络的最优权值和阈值组合。将该最优解解码,作为最终的HHO-BP模型。

  8. 模型预测:使用训练好的HHO-BP模型在测试集上进行预测,并评估模型的预测性能。

5. 结论

本文提出了一种基于哈里斯鹰算法优化BP神经网络(HHO-BP)的回归预测模型。该模型利用HHO算法强大的全局搜索和局部开发能力,对BP神经网络的权值和阈值进行优化,旨在克服传统BP神经网络易陷入局部最优和收敛速度慢的缺点。

通过在多个标准回归数据集上的实验验证,对比了HHO-BP模型与传统BP神经网络以及其他智能优化算法优化的BP神经网络的预测性能。实验结果表明,HHO-BP模型在预测精度、收敛速度和稳定性方面均表现出显著优势。HHO算法能够有效地搜索BP神经网络的参数空间,找到更优的权值和阈值组合,从而提高模型的预测能力。

本研究为回归预测提供了一种新的有效方法,证明了哈里斯鹰算法在BP神经网络优化中的潜力。未来研究方向可以包括:

  • 参数自适应:

    研究HHO算法参数的自适应调整策略,进一步提高模型的鲁棒性和泛化能力。

  • 混合算法:

    将HHO算法与其他优化算法或机器学习技术相结合,构建更强大的混合模型。

  • 多目标优化:

    将HHO算法应用于BP神经网络的多目标优化问题,例如同时优化预测精度和模型复杂度。

  • 实际应用:

    将HHO-BP模型应用于更广泛的实际回归预测问题,例如金融风险预测、能源消耗预测等。

⛳️ 运行结果

🔗 参考文献

[1] 刘祥斌.基于改进哈里斯鹰优化算法与机器学习的滑坡位移组合预测模型研究[D].长安大学,2023.

[2] 李响,缪祥华,张如雪,等.利用哈里斯鹰算法优化卷积神经网络的入侵检测研究[J].化工自动化及仪表, 2023, 50(4):513-520.

[3] 王强.基于卷积神经网络和鱼鹰算法优化BP神经网络预测活性粉末混凝土耐久性研究[J].中国建材科技, 2024, 33(2):78-82.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值