✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
聚类分析作为一种无监督学习方法,在模式识别、数据挖掘、图像处理等领域有着广泛的应用。其核心思想是将数据对象分成若干个簇,使得同一簇内的数据对象相似度高,而不同簇之间的数据对象相似度低。K 均值聚类算法(K-means)作为一种经典的聚类算法,因其简单、高效而被广泛应用。然而,K-means 算法对初始聚类中心的选择敏感,容易陷入局部最优,且在处理非球状或密度差异较大的数据集时性能不佳。为了克服这些缺点,本文将研究基于改进人工蜂群算法(Improved Artificial Bee Colony Algorithm, IABC)的 K 均值聚类算法(IABC-Kmeans)。
人工蜂群算法(Artificial Bee Colony Algorithm, ABC)是一种基于蜂群觅食行为的智能优化算法,具有全局搜索能力强、鲁棒性好等优点。近年来,许多学者将 ABC 算法应用于聚类问题中,取得了较好的效果。然而,标准的 ABC 算法在探索阶段存在搜索盲目性,在开发阶段容易陷入局部最优,收敛速度较慢。因此,对 ABC 算法进行改进,提高其在聚类问题上的性能具有重要意义。
本文提出的基于改进人工蜂群算法的 K 均值聚类算法(IABC-Kmeans),旨在通过改进 ABC 算法的搜索策略,优化 K-means 算法的聚类过程。具体而言,我们将在标准 ABC 算法的基础上引入以下改进:
首先,针对标准 ABC 算法在探索阶段的盲目性,我们将采用一种基于距离的自适应搜索策略。在雇佣蜂寻找新食物源的过程中,我们将考虑当前食物源(即聚类中心)与其他食物源之间的距离。对于远离其他食物源的食物源,我们将赋予其更大的搜索步长,以鼓励其进行更大范围的探索;对于靠近其他食物源的食物源,我们将减小其搜索步长,以促进其在当前区域进行精细搜索。这种策略能够平衡算法的全局探索和局部开发能力,提高算法的搜索效率。
其次,针对标准 ABC 算法在开发阶段容易陷入局部最优的问题,我们将引入一种基于精英策略的更新机制。在观察蜂选择食物源并进行更新时,我们将保留一部分当前最优的食物源,即使其适应度值低于新生成的食物源。这种策略能够防止算法在搜索过程中丢失优秀的个体,增强算法的鲁棒性,降低陷入局部最优的可能性。同时,我们还将引入一种基于扰动的更新方式,对选定的食物源进行小范围的随机扰动,以增加其跳出局部最优的机会。
在将改进的 ABC 算法应用于 K-means 聚类时,我们将把每个食物源表示为一个由 K 个聚类中心构成的向量。食物源的适应度函数将采用聚类内部平方和(Within-Cluster Sum of Squares, WCSS)作为评价指标,即簇内所有点到其对应聚类中心的距离平方和。优化目标是最小化 WCSS。
IABC-Kmeans 算法的具体流程如下:
- 初始化阶段:
随机生成一定数量的初始食物源(即 K 组初始聚类中心)。计算每个食物源的适应度值。
- 雇佣蜂阶段:
每个雇佣蜂根据当前食物源生成一个新的食物源,并计算新食物源的适应度值。如果新食物源的适应度值优于当前食物源,则替换当前食物源。采用基于距离的自适应搜索策略生成新食物源。
- 观察蜂阶段:
观察蜂根据雇佣蜂分享的信息选择食物源进行更新。采用轮盘赌选择策略选择食物源,并根据基于精英策略和扰动的更新机制生成新的食物源。计算新食物源的适应度值,如果优于当前食物源,则替换。
- 侦察蜂阶段:
如果某个食物源经过一定次数的迭代后仍未得到改进,则放弃该食物源,并随机生成一个新的食物源。
- 迭代和终止:
重复执行雇佣蜂、观察蜂和侦察蜂阶段,直到达到最大迭代次数或适应度值收敛到预设阈值。
- 聚类结果输出:
将最优食物源对应的聚类中心作为最终的聚类中心,并根据这些中心对数据进行划分,得到最终的聚类结果。
为了验证 IABC-Kmeans 算法的有效性,我们将使用多个标准数据集进行实验,并将结果与标准的 K-means 算法以及其他基于 ABC 算法的 K-means 改进算法进行比较。评价指标将包括聚类内部平方和(WCSS)、轮廓系数(Silhouette Coefficient)和调整兰德指数(Adjusted Rand Index, ARI)。通过对比这些指标,我们将分析 IABC-Kmeans 算法在收敛速度、聚类精度和鲁棒性方面的表现。
初步实验结果表明,IABC-Kmeans 算法在收敛速度和聚类精度方面均优于标准的 K-means 算法,且在处理复杂数据集时表现出更好的鲁棒性。基于距离的自适应搜索策略有效提高了算法的探索能力,基于精英策略和扰动的更新机制有效防止了算法陷入局部最优。
当然,IABC-Kmeans 算法仍有进一步优化的空间。例如,可以研究更有效的参数设置策略,以适应不同数据集的特点;可以探索将其他智能优化算法的思想融入到 ABC 算法中,进一步提升其性能;可以考虑将 IABC-Kmeans 算法应用于高维数据的聚类问题,并研究相应的降维或特征选择技术。
总而言之,本文提出的基于改进人工蜂群算法的 K 均值聚类算法,通过对标准人工蜂群算法进行有效改进,克服了 K-means 算法的不足,提高了聚类算法的性能。未来的研究将进一步探索算法的优化方向和应用领域。本文的研究为基于群体智能算法的聚类问题提供了一种新的思路和方法,对于推动聚类算法的发展具有一定的理论意义和应用价值。
本文的研究工作主要集中在算法的理论分析和初步的实验验证。未来将进行更全面和深入的实验,包括在更大规模和更复杂的数据集上进行测试,并与其他先进的聚类算法进行更详细的对比。此外,还将对算法的收敛性进行理论分析,并探索其在实际应用中的可行性,如在生物信息学数据分析、图像分割和文本聚类等领域的应用。通过不断的改进和完善,相信 IABC-Kmeans 算法能够在更多领域发挥其优势,为解决实际问题提供有效的工具。
⛳️ 运行结果
🔗 参考文献
[1] 张乐,刘忠,张建强,等.基于人工蜂群算法优化的改进高斯过程模型[J].国防科技大学学报, 2014(1):7.DOI:10.11887/j.cn.201401027.
[2] 王连稳,蔡延光.基于蜂群算法的随机需求车辆路径优化问题研究[J].电子世界, 2013(2):3.DOI:CNKI:SUN:ELEW.0.2013-02-059.
[3] 周淮香.改进型蜂群算法及其对PID参数优化的研究[D].广西工学院[2025-04-19].DOI:CNKI:CDMD:2.1011.285925.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇