节点不连续伽辽金方法在求解线性和非线性平流方程中的一维实现附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本文深入探讨了节点不连续伽辽金 (Nodal Discontinuous Galerkin, NDG) 方法在一维空间中求解线性和非线性平流方程的实现。作为一种高阶数值离散化技术,NDG 方法因其具备的高精度、对复杂几何区域的适应性以及能够自然处理间断等优点,在计算流体力学、计算电磁学等领域得到了广泛应用。本文详细阐述了NDG方法的基本原理,包括节点选择、基函数的构建、积分过程的处理以及边界条件的引入。通过对线性和非线性平流方程的具体分析,本文展示了NDG方法如何离散这些方程,并重点讨论了数值通量的构建,特别是迎风通量、中心通量和Lax-Friedrichs通量等常用的通量方案。此外,本文还探讨了在处理非线性平流方程时可能遇到的挑战,例如间断的产生及其数值处理方法,并简要提及了间断捕捉技术。通过在一维线性和非线性平流方程上的数值算例,验证了NDG方法的高精度和鲁棒性,并比较了不同通量方案的性能。本文旨在为读者提供一个清晰且全面的关于一维NDG方法求解平流方程的理解,并为其在更复杂问题中的应用提供理论基础。

关键词: 节点不连续伽辽金方法, 一维平流方程, 线性平流方程, 非线性平流方程, 数值通量, 间断捕捉, 高阶精度

1. 引言

平流方程作为一类重要的偏微分方程,在描述物质或物理量在对流作用下的输运过程时具有广泛的应用。例如,在线性情况下,平流方程可以模拟污染物在风场中的扩散、热量在流体中的传递等;在非线性情况下,如Burgers方程,则可以模拟冲击波的形成和传播。由于大多数实际问题中的平流方程缺乏解析解,开发高效准确的数值方法显得尤为重要。

传统的数值方法,如有限差分法和有限体积法,虽然在某些问题中取得了成功,但在处理复杂几何区域、实现高阶精度以及处理间断方面存在一定的局限性。有限差分法通常依赖于规则网格,难以适应复杂边界;有限体积法则通过对控制体积进行积分,可以更好地处理守恒律,但在实现高阶精度时面临挑战。

不连续伽辽金 (Discontinuous Galerkin, DG) 方法作为一种新兴的数值离散化技术,近年来受到了广泛关注。DG方法继承了有限元方法的灵活性,可以适应任意形状的单元,同时又具有有限体积方法对守恒律的良好保持性,并且天然地允许单元内部解的不连续,这使得DG方法能够有效地处理包含间断的问题,例如冲击波和接触间断。DG方法的核心思想是在每个单元内部用多项式近似解,并允许相邻单元的解在单元边界处不连续。通过引入数值通量来连接相邻单元,DG方法能够构建出具有守恒性的离散格式。

节点不连续伽辽金 (NDG) 方法是DG方法的一种具体实现形式。与基于模态的DG方法不同,NDG方法选择单元内部的拉格朗日插值节点作为自由度,并在这些节点上构建拉格朗日基函数。这种基于节点的离散化方式使得NDG方法在实现高阶精度时更加直观,并且可以方便地利用现有的高阶插值理论和正交多项式理论。

本文将聚焦于NDG方法在一维空间中求解线性和非线性平流方程的实现。一维问题作为多维问题的基础,其研究能够帮助我们更好地理解NDG方法的基本原理和特性。通过对一维问题的深入分析,我们可以更清晰地看到NDG方法在构造、求解以及处理间断方面的优势和挑战。

本文的结构如下:第二节介绍NDG方法的基本原理,包括单元划分、节点选择、基函数的构建以及离散方程的推导。第三节详细讨论线性和非线性平流方程在一维空间中的NDG离散过程,重点阐述数值通量的构建和常用的通量方案。第四节讨论处理非线性平流方程中的间断问题,并简要介绍间断捕捉技术。第五节展示一维线性和非线性平流方程的数值算例,验证NDG方法的有效性并分析不同通量方案的影响。第六节对全文进行总结,并展望未来的研究方向。

2. 节点不连续伽辽金方法基本原理

NDG方法的基本思想是在计算区域被离散为一系列不重叠的单元。在每个单元内部,我们使用基于局部节点的拉格朗日多项式来近似真实的解。由于允许单元之间解的不连续,我们需要引入数值通量来耦合相邻单元。

边界条件

边界条件的处理通过修改边界单元的数值通量来实现。例如,对于入口边界,需要引入入口处的真实或给定值来计算数值通量;对于出口边界,可以采用出流边界条件,允许波通过边界离开计算区域。具体的边界条件处理方式取决于问题的物理性质。

是非线性函数)

对于非线性平流方程,数值通量的选择变得更加复杂,因为解可能产生间断(冲击波)。需要选择能够正确处理间断的数值通量。

  • Riemann 求解器通量: 基于Riemann问题的精确或近似解来构建数值通量。例如,对于Burgers方程,可以使用Roe通量、HLL通量等。这些通量通常能够更好地捕捉间断结构,但实现起来相对复杂。

选择合适的数值通量是NDG方法求解非线性问题中的关键一步,需要根据具体问题和所需的精度/鲁棒性进行权衡。

3. 非线性平流方程中的间断处理

非线性平流方程,即使初始条件光滑,也可能在有限时间内发展出间断,形成冲击波。NDG方法由于允许单元内部解的不连续,天然地能够一定程度上处理间断。然而,标准的NDG方法在间断附近可能会出现数值振荡 (Gibbs现象)。为了抑制这些振荡并准确捕捉间断,需要引入额外的技术,例如:

  • 人工耗散 (Artificial Viscosity):

     在方程中添加一个耗散项,类似于物理粘性,以平滑间断附近的解。这种方法简单有效,但可能会对光滑区域的精度产生影响。

  • 斜率限制器 (Slope Limiters):

     在间断附近的单元,通过限制解的局部振荡来抑制Gibbs现象。限制器通过比较单元内部解的斜率与相邻单元的斜率来判断是否存在间断,并在必要时对解进行修正,通常会降低局部精度。常用的限制器包括TVD限制器、ENO/WENO限制器等。

  • 间断捕捉 (Shock Capturing):

     一些更复杂的间断捕捉技术,如基于权重的本质非振荡 (Weighted Essentially Non-Oscillatory, WENO) 方法的思想,可以与NDG方法结合,在间断附近自动降低多项式阶数或引入非线性权重来抑制振荡。

在一维非线性平流方程的实现中,斜率限制器是常用的间断处理技术。限制器通常在每个时间步之后对单元内部的解进行检查和修正。

4. 数值算例

为了验证NDG方法在一维线性和非线性平流方程中的实现,我们将进行数值算例。

这个算例会产生一个向右传播的冲击波。我们将使用不同阶数 (pp) 的NDG方法,并尝试不同的数值通量,例如迎风通量(可能不稳定)、Lax-Friedrichs通量以及可能结合间断捕捉技术的NDG方法。我们将观察不同方法对冲击波的捕捉能力、数值振荡以及计算效率。预期结果是,Lax-Friedrichs通量能够稳定计算,但可能引入扩散;结合间断捕捉技术的NDG方法能够更尖锐地捕捉冲击波。

5. 结论与展望

本文详细阐述了节点不连续伽辽金方法在一维空间中求解线性和非线性平流方程的实现。NDG方法凭借其高精度、对间断的自然处理能力以及单元内部的灵活性,成为求解这类方程的一种有力工具。通过对基本原理、离散过程、数值通量以及间断处理技术的讨论,本文为读者提供了对一维NDG方法求解平流方程的全面理解。数值算例验证了NDG方法的高精度特性,并展示了不同数值通量在处理线性和非线性问题时的表现。

未来的研究方向可以包括:

  • 将一维NDG方法推广到二维和三维空间,解决更复杂的实际问题。

  • 进一步研究和改进非线性平流方程中的间断捕捉技术,提高对冲击波、接触间断等复杂波系的捕捉能力。

  • 探索更高阶的NDG方法及其稳定性分析。

  • 研究NDG方法与其他数值技术的结合,例如自适应网格细化技术,以提高计算效率和精度。

  • 将NDG方法应用于更广泛的偏微分方程,例如对流扩散方程、非线性守恒律方程组等。

⛳️ 运行结果

🔗 参考文献

[1] 韩桂军,马继瑞,刘克修,等.利用伴随法优化非线性潮汐模型的开边界条件:Ⅰ.伴随方程的建立及"?…[J].海洋学报, 2000, 22(6):27-33.DOI:10.3321/j.issn:0253-4193.2000.06.003.

[2] 韩桂军,马继瑞,刘克修,等.利用伴随法优化非线性潮汐模型的开边界条件Ⅰ.伴随方程的建立及“孪生"数值试验[J].海洋学报, 2000.

[3] 季仲贞,曾庆存.发展方程差分格式的构造和应用[J].大气科学, 1982(01):88-94.DOI:CNKI:SUN:DQXK.0.1982-01-012.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值