✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
无线通信系统的性能在很大程度上取决于信号在传输过程中所经历的信道特性。在理想情况下,通信信道可以被建模为加性高斯白噪声 (AWGN) 信道,其中唯一的干扰是热噪声。然而,在实际无线环境中,信号还会受到多径传播的影响,导致瑞利衰落。瑞利衰落信道是一种典型的无线信道模型,它模拟了没有主导传播路径的室内或城市密集区域等非视距 (NLOS) 环境。在这种信道下,接收到的信号幅度会经历随机的衰落,从而显著影响系统的性能。
相位偏移键控 (PSK) 是一种常用的数字调制技术,它通过改变载波的相位来传输信息。由于其频谱效率较高且易于实现,PSK 在各种无线通信系统中得到了广泛应用。在分析通信系统的性能时,误码率 (BER) 是一个关键的指标,它表示每传输的总比特数中发生错误的比特数。而信噪比 (SNR) 则衡量了信号功率与噪声功率之比,是影响系统性能的另一个重要因素。
本文旨在深入比较瑞利衰落信道下和 AWGN 信道下使用 PSK 调制方案的误码率与信噪比关系。通过对这两种信道特性及其对 PSK 信号的影响进行分析,我们将阐明瑞利衰落对无线通信系统性能带来的挑战,并探讨其与理想 AWGN 信道之间的显著差异。我们将着重于理论推导和性能曲线的比较,以提供一个全面的理解。
瑞利衰落信道下的 PSK
与 AWGN 信道不同,瑞利衰落信道下的接收信号幅度是随机变化的。在典型的瑞利衰落模型中,接收信号的复包络是一个零均值复高斯随机变量,其幅度服从瑞利分布,相位服从均匀分布。由于衰落是随机的,即使发送功率恒定,接收到的信号功率也会随时间变化。
在瑞利衰落信道下,由于信号功率的随机变化,我们通常关注的是平均误码率。通过对所有可能的衰落实现进行平均,可以得到瑞利衰落信道下 M-PSK 的平均误码率。对于瑞利衰落信道,每个码元传输时所经历的瞬时信噪比是随机的。因此,需要将 AWGN 信道下的误码率公式对瞬时信噪比的概率密度函数进行积分,才能得到平均误码率。
BER 与 SNR 曲线比较与分析
通过比较 AWGN 信道和瑞利衰落信道下 PSK 的 BER 与 SNR 曲线,我们可以清楚地看到瑞利衰落对系统性能的显著影响
主要观察点:
-
高信噪比下的性能差异: 在高信噪比区域,AWGN 信道下的 BER 曲线以指数速率下降,意味着即使增加少量的信噪比,也能带来显著的性能提升。然而,在瑞利衰落信道下,BER 曲线的下降速度明显减缓,呈现出所谓的“衰落底”现象。这意味着即使信噪比很高,由于信道衰落的存在,误码率也无法无限降低。这是因为即使平均信噪比很高,仍然存在瞬时信噪比非常低的时刻,导致错误发生。
-
相同 BER 所需的 SNR: 为了达到相同的误码率,瑞利衰落信道下所需的信噪比远高于 AWGN 信道下。这种额外的信噪比需求反映了克服衰落带来的性能损失所需的代价。例如,为了达到 $10^{-3}$ 的误码率,在瑞利衰落信道下可能需要比 AWGN 信道下高出几十 dB 的信噪比。
-
曲线形状的差异: AWGN 信道下的 BER 曲线通常呈现出更陡峭的下降趋势,反映了噪声是主要的限制因素,提高信号功率可以直接有效地降低错误。而瑞利衰落信道下的 BER 曲线则相对平缓,尤其是在高信噪比区域,说明衰落成为主要的限制因素,简单地增加发送功率并不能完全消除衰落的影响。
Eb/N0 会增加。然而,在瑞利衰落信道下,这种增加幅度可能更大,因为高阶调制对衰落更敏感。高阶 PSK 相邻星座点之间的距离更小,更容易受到衰落和噪声的影响。
瑞利衰落带来的挑战:
瑞利衰落对无线通信系统带来了显著的挑战:
- 性能恶化:
导致误码率显著升高,尤其在高信噪比下。
- 可靠性降低:
信号功率的随机变化使得通信的可靠性下降。
- 对系统设计的挑战:
需要采取额外的技术来对抗衰落,例如分集、信道编码、均衡等。
应对瑞利衰落的技术:
为了提高瑞利衰落信道下 PSK 系统的性能,可以采用多种技术:
- 分集技术:
利用多条独立的传播路径来接收同一信号的副本,然后将这些副本进行合并,从而减小衰落的影响。常见的分集技术包括空间分集(使用多个天线)、频率分集和时间分集。
- 信道编码:
在发送端对信息比特进行冗余编码,在接收端利用这些冗余信息进行纠错,从而提高抗噪声和抗衰落的能力。常用的信道编码包括卷积码、Turbo 码和 LDPC 码。
- 均衡技术:
用于补偿多径传播引起的信号失真,通过反演信道效应来恢复原始信号。
- 自适应调制和编码 (AMC):
根据当前的信道条件动态调整调制方式和编码速率,以最大化系统的吞吐量和可靠性。
结论
通过对瑞利衰落信道下和 AWGN 信道下 PSK 的误码率与信噪比关系进行比较,我们可以清晰地认识到瑞利衰落对无线通信性能的严重影响。与理想的 AWGN 信道相比,瑞利衰落信道下 PSK 的误码率在高信噪比区域会趋于平稳,形成衰落底,并且需要更高的信噪比才能达到相同的性能。这种性能的显著下降主要是由于信号幅度随时间随机衰落所致。
理解瑞利衰落信道的特性及其对 PSK 信号的影响对于设计和优化无线通信系统至关重要。为了在瑞利衰落环境中实现可靠的通信,必须采用有效的抗衰落技术,例如分集、信道编码等。这些技术通过利用信道的时变特性或引入冗余信息来减轻衰落的影响,从而改善系统的误码率性能。未来的无线通信系统将继续面临复杂的信道环境,对瑞利衰落等非理想信道的研究以及高效的抗衰落技术的研究将持续具有重要的意义。
⛳️ 运行结果
🔗 参考文献
[1] 林丽.AWGN信道下Turbo码性能分析与仿真[J].电脑知识与技术, 2011(9X):3.DOI:10.3969/j.issn.1009-3044.2011.26.015.
[2] 林文长,赵维维.一种新的扩频信号信噪比估计算法[J].无线电工程, 2012, 42(1):3.DOI:10.3969/j.issn.1003-3106.2012.01.007.
[3] 谢斌,乐鸿浩,陈博.基于小波去噪与离散余弦变换相结合的正交频分复用系统信道估计算法[J].计算机应用, 2015, 035(009):2461-2464,2502.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇