【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着人工智能技术的飞速发展,智能体在复杂环境中进行决策和行动的能力日益成为研究热点。特别是在机器人学领域,如何使机器人具备自主感知、规划和避障能力,是实现真正智能的关键。强化学习(Reinforcement Learning, RL)作为一种重要的机器学习范式,通过让智能体与环境互动并从经验中学习,为解决动态环境下的决策问题提供了强大工具。深度学习(Deep Learning, DL)与强化学习的结合,即深度强化学习(Deep Reinforcement Learning, DRL),更是极大地拓展了RL的应用范围,使其能够处理高维度、连续的状态和动作空间问题。Pytorch作为一种灵活、高效的深度学习框架,为构建和训练复杂的神经网络模型提供了便利,使其成为实施DRL算法的理想选择。

在机器人避障控制问题中,DRL算法的应用潜力巨大。传统的基于规则或模型的避障方法往往难以应对未知和动态的环境变化。而DRL算法通过学习环境的动态特性,可以实现更具适应性和鲁棒性的避障策略。其中,深度Q网络(Deep Q-Network, DQN)作为DRL领域的开创性算法,首次成功地将深度学习应用于Q-learning,为解决离散动作空间的复杂控制问题奠定了基础。然而,传统的DQN算法存在一些局限性,例如经验回放池中样本的利用效率不高,对某些关键经验的重复学习不足等。为了改进DQN的性能,研究者提出了多种改进算法,其中优先级经验回放(Prioritized Experience Replay, PER)是一种有效的增强方法,它根据经验的重要性程度赋予不同的采样概率,从而更有效地利用回放经验。

此外,在机器人避障问题中,结合传统的控制方法与DRL算法,有望进一步提升系统的性能和安全性。人工势场法(Artificial Potential Field, APF)作为一种经典的机器人路径规划和避障方法,通过构建引力场和斥力场,引导机器人向目标移动并避开障碍物。将DRL算法与人工势场法相结合,可以充分发挥两者的优势:DRL算法学习复杂环境下的动态决策策略,而人工势场法提供一种直观的、基于距离的避障机制。这种融合方法有望在提高避障效率和安全性的同时,降低DRL算法的训练难度和对大量训练数据的依赖。

本文将聚焦于使用Pytorch框架,对基于DQN算法、优先级采样DQN算法以及DQN与人工势场法融合的避障控制方法进行深入研究。我们将首先阐述DQN算法的基本原理和Pytorch实现细节,接着探讨优先级采样DQN算法的改进机制及其在Pytorch中的实现方法。最后,我们将研究如何将DQN算法与人工势场法相结合,提出一种融合的避障控制策略,并探讨其在Pytorch框架下的实现和潜在优势。通过对这几种方法的比较分析,旨在为机器人自主避障控制提供理论和实践上的参考。

第一章:基于Pytorch框架的DQN算法及其在避障控制中的应用

DQN算法是Q-learning算法与深度神经网络相结合的产物。其核心思想是使用深度神经网络逼近Q函数,表示在状态ss下采取动作aa的预期未来累积奖励。传统的Q-learning算法在处理高维状态空间时面临“维度灾难”问题,而DQN通过神经网络的非线性映射能力,有效地解决了这一难题。

1.1 DQN算法基本原理

DQN算法主要包含以下关键组成部分:

  • 深度神经网络(DQN):

     用于估计Q值。输入是当前状态ss,输出是对应于所有可能动作的Q值。

  • 目标网络(Target Network):

     用于计算TD目标。目标网络与DQN网络结构相同,但参数更新频率较低,通常周期性地从DQN网络复制参数。使用目标网络可以提高训练的稳定性,避免自举更新中的震荡。

  • 经验回放(Experience Replay):

     将智能体与环境交互产生的经验(状态、动作、奖励、下一状态、是否终止)存储在一个回放缓冲区中。训练时,从回放缓冲区中随机采样一批经验用于更新网络参数。经验回放打破了经验之间的时序相关性,提高了样本利用效率。

1.2 Pytorch框架下的DQN实现

在Pytorch中实现DQN算法,需要定义神经网络模型、优化器、损失函数以及训练流程。

  • 神经网络模型构建:

     可以使用torch.nn模块构建多层感知机(MLP)或卷积神经网络(CNN),根据状态空间的类型选择合适的网络结构。对于机器人避障问题,如果状态是传感器读数(如激光雷达扫描数据),CNN可能更适合处理空间信息。如果状态是离散或低维的特征,MLP则足够

  • 经验回放缓冲区:

     可以使用Python列表或collections.deque实现,存储Tuple类型的经验数据。

  • 优化器和损失函数:

     常用的优化器有Adam、RMSprop等。损失函数通常使用nn.MSELoss()

  • 1
  • 训练流程:

     包括环境交互、经验存储、从回放缓冲区采样、计算TD目标、计算损失、反向传播更新网络参数等步骤。目标网络的更新通常采用软更新(Soft Update)或硬更新(Hard Update)。

1.3 DQN在避障控制中的应用挑战

将DQN应用于机器人避障控制,面临的主要挑战包括:

  • 状态空间和动作空间的定义:

     如何有效地表示机器人和环境的状态(如位置、速度、障碍物信息)以及机器人的动作(如线速度、角速度或离散的移动方向)。

  • 奖励函数设计:

     如何设计合理的奖励函数,既能鼓励机器人快速到达目标,又能有效避免碰撞。奖励函数的设计直接影响学习的效率和最终的避障策略。

  • 环境复杂性:

     动态障碍物、未知环境等复杂因素会增加学习的难度和模型的泛化能力。

  • 训练效率和稳定性:

     DQN的训练可能不稳定,容易出现过拟合或发散。

第二章:基于Pytorch框架的优先级采样DQN算法研究

传统的DQN算法从经验回放缓冲区中均匀采样经验,这可能导致一些重要的、学习潜力高的经验被重复学习的概率较低,而一些冗余的、学习潜力低的经验被过度学习。优先级经验回放(PER)机制旨在解决这一问题,通过赋予不同的经验不同的采样概率,优先采样具有更高TD误差的经验。TD误差反映了当前Q值估计与TD目标之间的差距,误差越大通常意味着该经验对模型更新的贡献越大,学习潜力越高。

2.1 优先级采样DQN算法基本原理

PER的核心思想是根据经验的“优先级”进行采样。

L(θ)=Ei∼P(i)[wi(Yi−Q(si,ai;θ))2]

2.2 Pytorch框架下的优先级采样DQN实现

在Pytorch中实现优先级采样DQN,需要在传统的DQN基础上修改经验回放缓冲区和采样机制。

  • 优先级经验回放缓冲区:

     需要存储经验及其对应的优先级。为了高效地采样,可以使用数据结构如SumTree或Segment Tree来维护优先级和计算采样索引。SumTree是一种平衡树结构,可以实现O(log⁡N)时间复杂度的采样和优先级更新。

2.3 优先级采样DQN在避障控制中的优势与挑战

PER的主要优势在于提高了经验的利用效率,使智能体能够更频繁地学习那些具有更高学习价值的经验。这有助于加速收敛,并可能提升最终的策略性能,尤其是在稀疏奖励或存在重要但罕见事件的环境中。

然而,实现PER也面临一些挑战:

  • 实现复杂度:

     构建和维护优先级数据结构(如SumTree)比简单的列表回放缓冲区更复杂。

  • 超参数调优:

     αα和ββ等超参数的选取对算法性能有影响,需要仔细调优。

  • 计算开销:

     每次网络更新后需要重新计算和更新采样经验的优先级,可能会增加计算开销。

第三章:DQN与人工势场法的融合避障控制研究

虽然DQN算法在复杂环境下的决策能力强大,但在简单的避障场景下,传统的基于几何或物理原理的方法可能更为直观和高效。人工势场法(APF)就是一种经典的例子,它通过构造引力场吸引机器人向目标前进,同时构建斥力场排斥机器人远离障碍物。将DQN与APF相结合,可以形成一种混合策略,有望融合两者的优点。

3.1 人工势场法基本原理

障碍物势能: 通常定义为一个排斥势,其值随机器人与障碍物距离的减小而增加,并在障碍物附近急剧增大。
Uobs(q)={12kobs(1ρobs(q)−1ρ0)2if ρobs(q)≤ρ00if ρobs(q)>ρ0

3.2 DQN与APF融合避障控制策略

将DQN与APF结合可以有多种方式。一种常见的融合策略是利用APF提供的避障信息来辅助DQN的决策或调整DQN的输出。

  • APF作为DQN的输入特征:

     将APF计算出的引力和斥力作为DQN的状态输入的一部分。这为DQN提供了关于目标和障碍物位置的先验信息,有助于网络更快地学习有效的策略。DQN网络可以学习如何在APF提供的势场信息的基础上进行更精细的决策。

  • APF作为DQN的奖励信号:

     利用APF的势能变化作为DQN的奖励函数的一部分。例如,当机器人移动导致总势能降低时给予正奖励,增加时给予负奖励。这鼓励机器人向势能降低的方向移动,从而间接实现避障和目标导航。

  • 混合控制策略:

     在不同的场景下采用不同的控制策略。例如,当障碍物较远时,主要依靠DQN进行全局路径规划;当机器人接近障碍物时,切换到APF进行局部避障。或者,DQN输出一个基础动作,然后APF根据局部障碍物信息对该动作进行微调。

  • DQN学习APF参数:

     让DQN学习APF中的一些参数(如kgoalkgoal, kobskobs, ρ0ρ0),使其能够根据当前环境动态调整APF的行为。

3.3 Pytorch框架下的融合实现

在Pytorch中实现DQN与APF的融合,需要将APF的计算逻辑集成到DQN的训练和推理过程中。

  • 状态表示:

     如果将APF信息作为DQN的输入,需要在构建状态向量时包含机器人与目标和障碍物的距离、角度以及APF计算出的引力和斥力向量。

  • 奖励函数设计:

     如果将APF势能变化作为奖励,需要在环境模型或奖励计算函数中集成APF的势能计算。

  • 网络结构和训练:

     DQN的网络结构和训练流程与传统DQN类似,但输入或奖励函数有所变化。如果采用混合控制策略,需要在代码中实现策略切换逻辑。

  • 参数学习:

     如果DQN学习APF参数,需要在DQN网络的输出中包含这些参数,并在训练过程中优化它们。

3.4 融合方法的优势与挑战

DQN与APF融合方法的潜在优势在于:

  • 提高训练效率:

     APF提供的先验信息可以引导DQN更快地学习有效的策略。

  • 增强鲁棒性:

     APF在处理局部避障问题上具有优势,与DQN结合可以提高系统在复杂和动态环境下的鲁棒性。

  • 提高可解释性:

     融入APF使得部分决策过程更具物理意义,有助于理解智能体的行为。

  • 降低对大量训练数据的依赖:

     APF提供了一定的“硬编码”知识,可以减少对纯粹通过试错学习的需求。

然而,融合方法也存在一些挑战:

  • 融合策略的设计:

     如何有效地融合DQN和APF,以及如何平衡两者的影响,是关键问题。不当的融合策略可能导致性能下降。

  • 参数协调:

     DQN和APF都有各自的参数,如何协同调整这些参数以获得最佳性能是一个挑战。

  • 局部最优问题:

     传统的APF存在局部最优问题,机器人可能陷入“陷阱”或在障碍物之间震荡。融合方法需要在一定程度上克服这个问题。

结论

本文基于Pytorch框架,对基于DQN算法、优先级采样DQN算法以及DQN与人工势场法融合的避障控制方法进行了探讨。DQN算法作为深度强化学习在离散控制领域的经典应用,为解决高维状态空间问题提供了基础。优先级采样DQN通过优化经验回放机制,提高了样本利用效率和训练稳定性。而DQN与人工势场法的融合则尝试结合数据驱动的强化学习与基于先验知识的传统控制方法,以期获得更优的避障性能。

未来研究方向可以包括:

  • 更复杂的融合策略:

     探索更精妙的DQN与APF或其他传统控制方法的融合方式,例如让DQN学习控制增益或势场参数的动态调整。

  • 连续动作空间避障:

     将DQN扩展到连续动作空间,例如使用Actor-Critic算法(如DDPG、SAC)结合优先级采样和APF信息,以实现更灵活的机器人运动控制。

  • 多机器人协作避障:

     研究如何将上述方法扩展到多机器人系统,实现协作避障和编队控制。

  • 真实世界部署:

     将训练好的策略部署到真实的机器人平台上,并解决仿真到现实(Sim-to-Real)的挑战。

  • 安全性与可解释性:

     深入研究如何提高基于DRL的避障策略的安全性,并提高策略的可解释性,以便更好地理解和调试。

⛳️ 运行结果

🔗 参考文献

[1] 王冰晨,连晓峰,颜湘,等.基于深度Q网络和人工势场的移动机器人路径规划研究[J].计算机测量与控制, 2022, 30(11):226-232.

[2] 王冰晨,连晓峰,颜湘,等.基于深度Q网络和人工势场的移动机器人路径规划研究[J].Computer Measurement & Control, 2022, 30(11).DOI:10.16526/j.cnki.11-4762/tp.2022.11.033.

[3] 左乾隆.基于生成式对抗网络的人脸超分辨率重建研究及应用[D].西安电子科技大学,2022.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值