✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电力负荷预测是电力系统安全稳定运行、经济合理规划和高效调度管理的关键基础。短期负荷预测作为其中重要的组成部分,其准确性直接影响着电力调度计划的制定、机组组合的优化以及电网运行的可靠性。传统的短期负荷预测方法,如时间序列模型、回归分析等,往往难以有效捕捉电力负荷数据复杂的非线性、非平稳性和随机性特征。近年来,随着人工智能技术的飞速发展,基于机器学习的方法在短期负荷预测领域展现出巨大的潜力。极限学习机(Extreme Learning Machine, ELM)因其学习速度快、泛化能力强等优点,已被广泛应用于电力负荷预测。然而,经典的ELM模型在面对复杂预测任务时,其随机初始化的输入层权重和隐含层偏置可能影响模型的性能和稳定性。为了进一步提升ELM在短期负荷预测中的准确性,引入优化算法对ELM的关键参数进行寻优成为一种有效的策略。本文旨在深入研究基于ELM、白鲸算法优化ELM(WOA-ELM)以及鹭鹰算法优化ELM(SEA-ELM)的电力系统短期负荷预测方法,通过构建相应的预测模型并进行对比分析,评估不同算法在提升ELM预测性能方面的有效性。
关键词: 短期负荷预测;极限学习机(ELM);白鲸算法(WOA);鹭鹰算法(SEA);优化算法;机器学习
1. 引言
电力系统的正常运行依赖于精确的电力负荷预测,特别是短期负荷预测,其预测时间尺度通常为一天至一周。准确的短期负荷预测能够为电力系统的实时调度提供依据,例如安排发电计划、合理分配电力资源、保障电网的安全稳定运行,并最大程度地减少运营成本。电力负荷受多种复杂因素的影响,包括但不限于历史负荷数据、气象因素(如温度、湿度、风速、光照)、日期类型(工作日、周末、节假日)、社会经济活动以及突发事件等。这些因素之间的非线性关系、时变性和随机性使得短期负荷预测成为一个具有挑战性的问题。
传统的负荷预测方法,如自回归移动平均模型(ARMA)、季节性自回归综合移动平均模型(SARIMA)等时间序列模型,在处理线性数据方面具有一定的优势,但对于电力负荷数据中的非线性特征捕捉能力有限。回归分析方法,如多元线性回归,虽然可以考虑多个影响因素,但也难以有效地建模非线性关系。随着计算能力的提升和机器学习技术的成熟,人工神经网络(ANN)、支持向量机(SVM)、深度学习模型等在电力负荷预测领域得到了广泛应用,并在一定程度上提高了预测精度。
极限学习机(ELM)作为一种单隐含层前馈神经网络(SLFN),具有学习速度极快、泛化性能好等特点。与传统的BP神经网络需要迭代调整所有层的权重和偏置不同,ELM随机初始化输入层到隐含层的权重和隐含层偏置,并通过解析求解的方式一次性确定隐含层到输出层的权重。这种独特的学习机制使得ELM在处理大规模数据集时具有显著的速度优势。然而,ELM的性能在一定程度上受随机初始化的输入层权重和隐含层偏置的影响。不合适的参数选择可能导致模型性能不稳定或陷入局部最优。
为了克服经典ELM的局限性,将智能优化算法应用于ELM的关键参数寻优成为一种重要的研究方向。智能优化算法,如遗传算法(GA)、粒子群优化(PSO)、灰狼优化算法(GWO)等,能够通过模拟自然界或生物群体的行为,在复杂的搜索空间中寻找最优解。近年来,一些新型的智能优化算法相继被提出,并在各种优化问题中展现出良好的性能,例如白鲸算法(Whale Optimization Algorithm, WOA)和鹭鹰算法(Harris Hawks Optimization, HHO),而鹭鹰算法(Harris Hawks Optimization, HHO)已被证实具有较强的寻优能力。本研究将探讨白鲸算法(WOA)和鹭鹰算法(SEA)对ELM进行优化,以期进一步提升其在电力系统短期负荷预测中的准确性。
本文的研究内容主要包括以下几个方面:
-
构建基于经典ELM的电力系统短期负荷预测模型。
-
引入白鲸算法(WOA)对ELM的输入层权重和隐含层偏置进行优化,构建WOA-ELM模型,并应用于电力系统短期负荷预测。
-
引入鹭鹰算法(SEA)对ELM的输入层权重和隐含层偏置进行优化,构建SEA-ELM模型,并应用于电力系统短期负荷预测。
-
选取实际电力负荷数据进行实验,对比分析ELM、WOA-ELM和SEA-ELM在短期负荷预测中的性能,包括预测精度和稳定性。
2. 相关理论基础
2.1 极限学习机 (ELM)
2.2 白鲸算法 (Whale Optimization Algorithm, WOA)
白鲸算法(WOA)是一种基于白鲸捕食行为的群体智能优化算法。白鲸捕食时通常采用一种独特的“气泡网攻击”策略。WOA算法模拟了白鲸的三种主要行为:围捕猎物、气泡网攻击(探索)和搜索猎物(开发)。
2.3 鹭鹰算法 (Harris Hawks Optimization, HHO)
鹭鹰算法(HHO),也被称为哈里斯鹰优化算法,是一种模拟鹭鹰合作围捕猎物行为的群体智能优化算法。鹭鹰在捕食过程中,会根据猎物(兔子)的逃跑策略和自身能量状态采取不同的围捕策略。HHO算法主要包括探索阶段、开发阶段以及从探索到开发的转换。
3. 研究方法
本研究将构建基于ELM、WOA-ELM和SEA-ELM的电力系统短期负荷预测模型,并通过实验对比评估其性能。具体研究步骤如下:
3.1 数据准备
选择实际电力系统短期负荷数据集作为研究对象。数据集应包含历史电力负荷数据以及影响负荷的多种因素,如日期信息(星期几、是否节假日)、气象数据(温度、湿度、风速等)。对原始数据进行预处理,包括数据清洗、异常值处理、缺失值填充以及归一化处理等。将数据集划分为训练集和测试集,训练集用于模型的训练,测试集用于评估模型的预测性能。
3.2 基于ELM的短期负荷预测模型
构建经典的ELM模型用于短期负荷预测。输入层节点数取决于影响负荷的因素数量,输出层节点数通常为1(预测未来某个时刻的负荷值)。隐含层节点数是ELM的重要参数,本研究将通过交叉验证或经验选择确定合适的隐含层节点数。利用训练集对ELM模型进行训练,并使用测试集评估其预测性能。
3.3 基于WOA-ELM的短期负荷预测模型
构建基于白鲸算法优化ELM的短期负荷预测模型。将ELM的输入层权重和隐含层偏置串联成一个向量,作为WOA算法需要优化的变量。设定WOA算法的参数,如种群规模、最大迭代次数等。WOA的适应度函数定义为ELM在训练集上的预测误差(例如均方根误差RMSE)。WOA算法通过迭代寻优,搜索最优的输入层权重和隐含层偏置。将WOA找到的最优参数应用于ELM模型,然后利用测试集评估WOA-ELM模型的预测性能。
3.4 基于SEA-ELM的短期负荷预测模型
构建基于鹭鹰算法优化ELM的短期负荷预测模型。类似于WOA-ELM,将ELM的输入层权重和隐含层偏置串联成一个向量,作为SEA算法需要优化的变量。设定SEA算法的参数,如种群规模、最大迭代次数等。SEA的适应度函数同样定义为ELM在训练集上的预测误差。SEA算法通过迭代寻优,搜索最优的输入层权重和隐含层偏置。将SEA找到的最优参数应用于ELM模型,然后利用测试集评估SEA-ELM模型的预测性能。
3.5 性能评估指标
4. 讨论
本研究表明,引入智能优化算法(WOA和SEA)对ELM的输入层权重和隐含层偏置进行寻优,能够有效提升ELM在电力系统短期负荷预测中的准确性。优化算法通过全局搜索能力,能够找到比随机初始化更优的参数组合,从而改善ELM模型的性能和稳定性。
WOA算法和SEA算法作为较新的智能优化算法,在ELM参数寻优方面展现出潜力。本研究的实验结果为评估这两种算法在ELM优化中的有效性提供了依据。然而,不同优化算法的性能可能受具体数据集特征和参数设置的影响。在实际应用中,需要根据具体情况选择合适的优化算法并进行参数调优。
本研究也存在一些局限性。例如,仅考虑了对ELM输入层权重和隐含层偏置的优化,未来可以考虑对隐含层节点数等其他参数进行优化。此外,可以尝试结合其他预测模型或集成学习方法,进一步提升短期负荷预测的精度。对于优化算法本身,可以研究改进的WOA或SEA算法,以提高其收敛速度和寻优能力。
5. 结论
本文深入研究了基于ELM、白鲸算法优化ELM(WOA-ELM)和鹭鹰算法优化ELM(SEA-ELM)的电力系统短期负荷预测方法。通过构建相应的预测模型并进行实验对比分析,得出以下结论:
-
经典ELM模型在电力系统短期负荷预测中具有一定的预测能力,但其随机初始化的参数可能影响模型的性能和稳定性。
-
引入白鲸算法(WOA)对ELM的输入层权重和隐含层偏置进行优化,能够有效提升ELM的预测精度,WOA-ELM模型通常优于经典的ELM模型。
-
引入鹭鹰算法(SEA)对ELM的输入层权重和隐含层偏置进行优化,也能够有效提升ELM的预测精度,SEA-ELM模型同样优于经典的ELM模型。
-
在本研究使用的数据集上,经过优化算法寻优的ELM模型(WOA-ELM和SEA-ELM)相比于经典ELM模型,在RMSE、MAE和MAPE等评估指标上均取得了更好的表现,证明了优化算法在提升ELM预测性能方面的有效性。
未来的研究方向可以包括:探索其他先进的智能优化算法应用于ELM参数寻优;结合深度学习模型与优化算法,构建更强大的负荷预测模型;考虑更多影响因素并进行有效的特征工程;以及研究多步预测和不确定性预测等问题。本研究为基于ELM和智能优化算法的电力系统短期负荷预测提供了理论基础和实践参考。
⛳️ 运行结果
🔗 参考文献
[1] 毛力,王运涛,刘兴阳,等.基于改进极限学习机的短期电力负荷预测方法[J].电力系统保护与控制, 2012, 40(20):5.DOI:CNKI:SUN:JDQW.0.2012-20-027.
[2] 王保义,赵硕,张少敏.基于云计算和极限学习机的分布式电力负荷预测算法[J].电网技术, 2014, 38(2):6.DOI:10.13335/j.1000-3673.pst.2014.02.039.
[3] 董浩,李明星,张淑清,等.基于核主成分分析和极限学习机的短期电力负荷预测[J].电子测量与仪器学报, 2018(1):6.DOI:CNKI:SUN:DZIY.0.2018-01-026.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇