✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
核磁共振成像(MRI)作为一种非侵入性、无电离辐射的医学成像技术,在疾病诊断、治疗评估和基础医学研究中发挥着不可替代的作用。其中,T1弛豫时间是组织学特性和病理生理状态的重要生物物理参数,其准确映射对于鉴别正常组织与病变组织、评估疾病进展以及指导临床治疗具有重要临床意义。然而,传统T1映射方法往往面临扫描时间长、图像分辨率低、对运动敏感以及计算复杂度高等挑战,这在很大程度上限制了其在临床实践中的广泛应用。本研究旨在深入探讨一种基于非线性最小二乘法(NLLS)的新型算法,如何从梯度回波序列(SPGR)信号中准确、精确地估计高分辨率的T1加权图像,以期克服现有技术的局限性,为临床诊断提供更优质的图像信息。
一、背景与意义
T1弛豫时间反映了纵向磁化矢量恢复到平衡状态所需的时间。组织中水分子的含量、与大分子的相互作用以及铁离子等顺磁性物质的存在都会影响T1值。因此,T1值的改变常作为许多疾病的生物标志物,例如肿瘤、炎症、脑部病变和心肌梗死等。传统的T1映射方法主要包括反转恢复(IR)序列和变角激发(VFA)序列。IR序列虽能提供高精度T1值,但其扫描时间长且对运动敏感,不适用于需要快速扫描或患者依从性差的场景。VFA序列通过改变射频脉冲的翻转角来获取不同信号,进而拟合T1值。尽管VFA序列扫描速度相对较快,但其信号模型对射频场(B1)的不均匀性高度敏感,且在低信噪比(SNR)下拟合精度下降。
SPGR序列(Spoiled Gradient Recalled Echo)因其扫描速度快、对运动伪影不敏感等优点,在临床上得到了广泛应用,尤其适用于三维体积成像。SPGR序列的信号强度取决于翻转角、重复时间(TR)、回波时间(TE)和T1弛豫时间。理论上,通过采集不同翻转角下的SPGR信号,可以利用其信号方程进行T1拟合。然而,SPGR信号方程是一个非线性方程,传统的线性回归方法难以直接应用于其T1映射。此外,为了获取高分辨率的T1加权图像,需要采集大量数据,这又会延长扫描时间并增加数据存储需求。因此,开发一种高效、准确、精确且能实现高分辨率T1映射的新型算法,显得尤为重要。
二、NLLS算法在SPGR信号T1映射中的应用原理
本研究核心在于利用NLLS算法对SPGR信号进行T1拟合。SPGR信号强度(S)的简化方程可表示为:
S=M0⋅1−e−TR/T1⋅cosα1−e−TR/T1⋅cosα⋅sinα
NLLS算法的实施步骤通常包括:
三、新型算法的优势与特点
相较于传统方法,基于NLLS的新型算法在SPGR信号T1映射中展现出显著优势:
-
高分辨率T1映射: SPGR序列本身即可实现高分辨率三维成像。通过逐像素NLLS拟合,可以保留原始SPGR图像的空间分辨率,生成与解剖结构高度一致的高分辨率T1映射图像。这对于细微病变的早期发现和精确评估至关重要。
-
准确性和精确性提升: NLLS算法直接拟合非线性SPGR信号方程,避免了传统线性化方法可能引入的近似误差。通过优化算法,可以更准确地估计T1值,并减小测量噪声对拟合结果的影响,从而提高T1映射的精确性。
-
对B1场不均匀性的鲁棒性: 虽然SPGR信号模型对B1场不均匀性敏感,但通过结合B1场校正技术(例如,通过单独的B1映射序列测量B1场分布),可以在NLLS拟合过程中对信号方程进行修正,进一步提高T1估计的准确性。或者,某些先进的NLLS算法可以通过同时估计B1场和T1值来减轻B1场的影响。
-
灵活性与可扩展性: NLLS框架具有良好的灵活性。可以根据实际需求,将其他影响信号的参数(如T2*,如果TE不为0且存在梯度不完美)整合到信号模型中进行联合拟合。此外,该算法可以与压缩感知、并行成像等技术相结合,进一步缩短扫描时间。
-
减少扫描时间(潜在): 尽管需要采集多组不同翻转角下的SPGR图像,但由于SPGR序列本身的快速采集特性,总扫描时间仍可显著短于高精度IR序列。通过优化翻转角选择策略(例如,选择最佳的几个翻转角),可以在保证精度的前提下,进一步减少采集数据量。
四、挑战与未来展望
尽管基于NLLS的新型算法在SPGR信号T1映射中具有巨大潜力,但仍面临一些挑战:
- 计算复杂度:
逐像素NLLS拟合的计算量相对较大,尤其对于高分辨率三维图像,可能需要较长的处理时间。未来研究可以探索更高效的优化算法、并行计算技术或基于深度学习的加速方法来解决这一问题。
- 噪声敏感性:
在低信噪比区域,NLLS拟合的稳定性可能会受到影响。适当的图像去噪预处理或在拟合过程中引入正则化项可以提高算法的鲁棒性。
- 初始值选择:
NLLS算法对初始值敏感,不当的初始值可能导致算法陷入局部最优或不收敛。开发更智能的自动初始化策略是未来研究方向之一。
- B1场校正的精确性:
虽然可以进行B1场校正,但B1场测量本身的误差会传递到T1拟合中。探索更准确、更快速的B1场映射方法或开发无需外部B1场测量的自校正算法将是未来的重要研究方向。
未来,本研究方向可进一步拓展至:
- 临床验证与应用:
在多种疾病模型和临床场景下,对该新型算法进行广泛的临床验证,评估其在疾病诊断、治疗监测和预后评估中的实际价值。
- 多参数映射:
将T1映射与其他生物物理参数(如T2、扩散系数等)结合,实现多参数定量成像,为临床提供更全面的组织信息。
- 深度学习融合:
探索将深度学习技术与NLLS算法相结合,例如利用神经网络进行参数初始化、加速迭代过程或直接从SPGR信号生成T1映射图像,以进一步提高效率和准确性。
五、结论
本研究详细阐述了基于NLLS的新型算法如何从SPGR信号中准确、精确地估计高分辨率的T1加权图像。该算法利用SPGR序列的快速采集特性,通过直接拟合非线性信号方程,克服了传统T1映射方法的诸多局限性。其在高分辨率、准确性和精确性方面的优势,有望为临床核磁共振成像提供更优质的定量信息,从而在疾病早期诊断、治疗方案制定和疗效评估中发挥更大的作用。尽管仍存在一些挑战,但随着计算能力的提升和算法的不断优化,基于NLLS的SPGR T1映射技术必将在未来的医学影像领域展现出广阔的应用前景。
⛳️ 运行结果
🔗 参考文献
[1] 张鉥缨.BOLD功能磁共振成像在癫痫患者语言、记忆功能区及其抗癫痫药物影响作用的研究[D].四川大学,2007.DOI:10.7666/d.y1193892.
[2] 张二宁.脑功能连接改变在2型糖尿病患者脑功能变化机制的研究[D].河南大学,2015.DOI:10.7666/d.D760418.
[3] 中國醫藥大學:中國醫學研究所博士班.中醫經絡基礎及其臨床應用之研究-以針刺原穴腦功能圖譜暨太極拳功效為例;Basics and Clinical Applications of the Meridian–Studies on Functional Brain Mappings of Foot-3-Yang Yuan Acupoints and Taichi Training Effects[J]. 2008.DOI:http://140.128.69.115:8080/ir/handle/310903500/372.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇