【使用ode15s求解微分代数方程组】均质反应性四元混合物的残渣曲线图附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

微分代数方程组(DAEs)广泛存在于描述复杂系统动力学行为的数学模型中,尤其是在化学反应工程、过程控制和物理科学等领域。由于其固有的代数约束,DAEs的数值求解相比常微分方程组(ODEs)更具挑战性。本文旨在深入探讨MATLAB中ode15s函数在求解刚性DAEs方面的卓越性能,并以一个典型的化学反应工程问题——均质反应性四元混合物的残渣曲线图(Residue Curve Maps, RCMs)构建为例,详细阐述其应用。残渣曲线图是表征复杂反应精馏系统行为的关键工具,其绘制依赖于对反应组分在连续蒸发/冷凝过程中的动态演化进行精确模拟,而此动态过程通常由DAEs组表示。通过理论分析、数值模拟和结果可视化,本文将展示ode15s如何有效地处理DAEs的结构复杂性,实现对反应系统相平衡和反应动力学耦合作用的准确刻画,从而为多组分反应分离过程的理性设计提供坚实的数据基础。

1. 引言

在现代科学与工程领域,许多动态系统的行为并非仅由纯粹的微分关系所描述,而是同时受到代数约束条件的限制。这类系统在数学上通常被建模为微分代数方程组(Differential-Algebraic Equations, DAEs)。与标准常微分方程组(ODEs)相比,DAEs包含了微分变量和代数变量,以及它们之间的耦合关系。这种结构使得DAEs的数值求解面临独特的挑战,例如指标(index)问题、初始条件的一致性问题以及求解器选择的鲁棒性问题。

化学反应工程,特别是多组分反应精馏过程,是DAEs应用的一个典型场景。在这些过程中,组分平衡、相平衡以及反应动力学等物理化学现象相互交织,导致描述其动态行为的数学模型常常呈现出DAE的形式。残渣曲线图(RCMs)作为一种强大的图形工具,被广泛用于理解和设计反应精馏过程。RCMs描绘了液体组分在恒定压力下从初始点蒸发直到纯组分或共沸物的轨迹。对于反应体系,RCMs不仅要考虑相平衡,还必须纳入反应动力学的影响,这使得其数学模型更加复杂,常表现为DAEs。

MATLAB的ode15s函数是为求解刚性ODEs和DAEs而设计的高效数值积分器。它基于变阶数、变步长的向后差分公式(BDF),能够有效地处理刚性问题。本文将深入探讨ode15s在求解DAEs方面的理论基础和实际应用,并以均质反应性四元混合物的残渣曲线图构建为例,详细阐述如何利用ode15s精确模拟此类复杂系统的动态行为。通过这种方式,我们不仅可以展示ode15s的强大功能,也为理解和设计反应精馏塔提供了有益的见解。

2. 微分代数方程组(DAEs)的数学背景与挑战

2.1. DAEs的定义与分类

图片

2.2. DAEs求解的挑战

相比于ODEs,DAEs的数值求解面临以下主要挑战:

  1. 初始条件的一致性

    : DAEs的初始条件必须满足所有的代数约束。不一致的初始条件会导致数值解在第一步就出现较大误差甚至发散。

  2. 指标问题

    : 高指标DAEs通常更难求解,因为标准的ODE求解器无法直接处理代数约束。对代数约束进行微分可能引入新的数值问题,例如漂移(drift)。

  3. 刚性问题

    : DAEs常常表现出刚性,即系统中存在时间尺度差异很大的动态过程。这需要隐式求解器才能稳定地积分。

  4. 结构特性

    : DAEs可能包含线性和非线性代数约束,这影响了求解器的选择和迭代求解的效率。

3. MATLAB ode15s函数在DAEs求解中的应用

3.1. ode15s的算法基础

ode15s是MATLAB中专为求解刚性ODEs和DAEs而设计的数值积分器。它基于后向差分公式(BDFs,也称为Gear方法),这是一种隐式多步方法。BDFs通过使用当前步及前几步的函数值来近似导数,其主要优点是:

  • 高阶精度

    ode15s可以动态调整阶数(从1到5阶),以在满足误差容限的前提下实现最高的效率。

  • A-稳定或An-稳定

    : BDFs具有良好的稳定性区域,能够有效处理刚性问题。这意味着即使时间步长较大,也不会引起数值振荡或发散。

  • Jacobian矩阵的使用

    : 求解隐式方程需要迭代方法(如牛顿法),这通常涉及计算系统的Jacobian矩阵。ode15s可以自动计算或用户提供Jacobian矩阵,从而加速迭代收敛。

    图片

3.2. ode15s的语法与参数设置

图片

图片

图片

3.3. 质量矩阵与指标1 DAEs

图片

4. 均质反应性四元混合物的残渣曲线图构建

4.1. 残渣曲线图(RCMs)的理论基础

残渣曲线图描述了在恒定压力下,液体混合物在简单蒸馏(即连续去除蒸汽相)过程中,其液相组成随时间变化的轨迹。对于反应体系,RCMs不仅反映了挥发性差异,还体现了化学反应对组分组成的影响。

对于一个多组分反应体系,NN个组分在反应器中发生RR个独立反应。考虑一个简单的间歇蒸馏过程,其数学模型通常由以下微分方程组描述:

图片

图片

图片

图片

残渣曲线的绘制需要在一个固定的总压下,从给定的初始液体组成出发,根据上述方程组连续计算其在蒸发过程中的轨迹。由于相平衡(尤其是活度系数和饱和蒸汽压对温度的依赖)与组分质量平衡和反应动力学相互耦合,这通常形成一个复杂的DAEs系统。
4.2. 四元混合物残渣曲线的DAEs模型

图片

图片

图片

图片

4.3. ode15s实现细节与挑战

图片

    5. 数值模拟与结果分析

    图片

    模拟步骤:

    图片

    图片

      预期结果分析:

      • 曲线特征

        : 残渣曲线会从初始点出发,趋向于稳定节点(例如,反应生成物或者热力学上稳定的共沸物)。

      • 反应路径

        : 反应的存在会改变残渣曲线的形状,甚至可以跨越纯组分边界,形成反应共沸物或反应蒸馏边界线。

      • 区域划分

        : 残渣曲线将相图划分为不同的精馏区域。

      • 敏感性分析

        : 分析反应速率、平衡常数和相对挥发度等参数对残渣曲线形状的影响,为反应精馏塔的设计提供指导。例如,通过改变反应速率常数或操作温度,可以改变反应平衡点和相对挥发度,从而影响残渣曲线的拓扑结构。

      通过ode15s的鲁棒性,我们可以有效地处理活度系数模型带来的高度非线性以及温度作为代数变量的耦合,获得平滑且物理上合理的残渣曲线。当系统存在多个共沸点或反应共沸物时,ode15s能够稳定地追踪曲线的轨迹,帮助我们发现和理解这些复杂的相平衡行为。

      6. 结论

      本文详细阐述了MATLAB ode15s函数在求解微分代数方程组(DAEs)方面的理论基础和实际应用。通过以均质反应性四元混合物的残渣曲线图构建为例,我们展示了ode15s如何有效地处理化学反应工程中常见的复杂数学模型。残渣曲线图的绘制是一个典型的DAEs问题,其中组分质量平衡是微分方程,而相平衡和反应动力学则引入了非线性代数约束。ode15s凭借其基于BDF的隐式算法和对刚性问题的出色处理能力,能够稳定、精确地追踪反应体系在蒸馏过程中的动态演化,即使面对高度非线性和强耦合的物理化学现象也能保持鲁棒性。

      通过对残渣曲线的精确模拟,工程师和研究人员能够:

      1. 深入理解复杂反应体系的相平衡与反应动力学耦合行为

      2. 预测反应精馏过程中的可能瓶颈和操作区域

      3. 为反应精馏塔的塔板数、进料位置和操作条件等关键参数提供理性设计依据

      4. 发现并利用反应共沸物和反应蒸馏边界线,以优化分离效率。

      ⛳️ 运行结果

      图片

      图片

      🔗 参考文献

      [1] 刘凤梅.带时滞的反应精馏模型的数值模拟[D].北京化工大学,2011.DOI:10.7666/d.y1878002.

      [2] 李群勇.加氢裂化反应器的建模和仿真[D].厦门大学,2009.DOI:CNKI:CDMD:2.2009.079649.

      [3] 李广.基于QSS的自适应多步校正算法及其在航天器动力学中的应用[D].杭州电子科技大学,2021.

      📣 部分代码

      🎈 部分理论引用网络文献,若有侵权联系博主删除

       👇 关注我领取海量matlab电子书和数学建模资料 

      🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

      🌈 各类智能优化算法改进及应用
      生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
      🌈 机器学习和深度学习时序、回归、分类、聚类和降维

      2.1 bp时序、回归预测和分类

      2.2 ENS声神经网络时序、回归预测和分类

      2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

      2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

      2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
      2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

      2.7 ELMAN递归神经网络时序、回归\预测和分类

      2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

      2.9 RBF径向基神经网络时序、回归预测和分类

      2.10 DBN深度置信网络时序、回归预测和分类
      2.11 FNN模糊神经网络时序、回归预测
      2.12 RF随机森林时序、回归预测和分类
      2.13 BLS宽度学习时序、回归预测和分类
      2.14 PNN脉冲神经网络分类
      2.15 模糊小波神经网络预测和分类
      2.16 时序、回归预测和分类
      2.17 时序、回归预测预测和分类
      2.18 XGBOOST集成学习时序、回归预测预测和分类
      2.19 Transform各类组合时序、回归预测预测和分类
      方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
      🌈图像处理方面
      图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
      🌈 路径规划方面
      旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
      🌈 无人机应用方面
      无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
      🌈 通信方面
      传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
      🌈 信号处理方面
      信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
      🌈电力系统方面
      微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
      🌈 元胞自动机方面
      交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
      🌈 雷达方面
      卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
      🌈 车间调度
      零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

      👇

      评论
      添加红包

      请填写红包祝福语或标题

      红包个数最小为10个

      红包金额最低5元

      当前余额3.43前往充值 >
      需支付:10.00
      成就一亿技术人!
      领取后你会自动成为博主和红包主的粉丝 规则
      hope_wisdom
      发出的红包
      实付
      使用余额支付
      点击重新获取
      扫码支付
      钱包余额 0

      抵扣说明:

      1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
      2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

      余额充值