【一种新的用于图像加密的一维混沌系统】一种基于混沌映射的新型位级图像加密算法研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

 随着数字图像在信息传输和存储中的广泛应用,图像信息的安全传输日益重要。传统的加密算法在处理图像数据时,往往效率低下且对图像特有性质的利用不足。本文针对这些问题,提出了一种基于混沌映射的新型位级图像加密算法。该算法利用混沌系统对初始条件的敏感性和其伪随机性,对图像的像素位进行置乱和扩散,从而实现图像的有效加密。实验结果表明,本算法具有良好的加密效果、较高的安全性和对噪声的鲁棒性,为图像加密领域提供了一种新的思路和方法。

关键词: 图像加密;混沌映射;位级置乱;信息安全;数字图像处理


1. 引言

在当今信息爆炸的时代,数字图像作为承载信息的重要载体,已广泛应用于医疗、军事、通信、电子商务等诸多领域。然而,图像信息的开放性、冗余性以及传输过程中的不安全性,使得图像加密成为一个亟待解决的关键问题。传统的加密算法,如数据加密标准(DES)和高级加密标准(AES),主要针对文本数据设计,其加密速度和效率在处理海量图像数据时往往不尽人意。此外,图像数据固有的高相关性、高冗余性等特点,也使得传统的加密算法在图像加密领域暴露出一些不足。

近年来,混沌理论以其对初始条件的敏感性、伪随机性、遍历性以及对非周期运动的描述能力,为图像加密提供了新的研究方向。混沌系统产生的混沌序列具有类似噪声的特性,能够有效打乱图像像素间的相关性,从而提高加密算法的安全性。目前,基于混沌的图像加密算法已成为研究热点,并取得了显著进展。然而,大多数现有的混沌图像加密算法主要集中在像素级的置乱和扩散,对图像的位级操作关注较少。图像的位级操作能够更精细地改变图像的像素值,从而进一步增强加密的强度和鲁棒性。

本文旨在提出一种新型的基于混沌映射的位级图像加密算法。该算法充分利用混沌映射的复杂性和不可预测性,通过对图像像素的位进行置乱和扩散,实现对图像的有效加密。本文将详细阐述算法的设计原理、实现步骤,并通过实验验证其性能和安全性。

2. 混沌映射理论基础

混沌(Chaos)是指发生在确定性非线性动力学系统中的一种普遍现象,其行为表现为对初始条件的极端敏感性,即微小的初始扰动会导致系统状态的巨大差异。同时,混沌系统具有内在的随机性,其轨迹在相空间中呈现出不重复、不规则的特点,但又受限于一个有界区域内,即所谓的混沌吸引子。

常用的混沌映射包括Logistic映射、Lorenz系统、Chen系统等。本文主要考虑使用一维Logistic映射作为混沌序列的生成器,其数学表达式如下:

xn+1=μxn(1−xn)

3. 新型位级图像加密算法设计

本算法的设计理念是充分利用混沌映射的特性,通过对图像的位级数据进行置乱和扩散,实现图像的有效加密。算法主要包括以下几个阶段:图像预处理、位级置乱、位级扩散以及密钥生成与管理。

3.1 图像预处理

输入图像通常为RGB彩色图像或灰度图像。对于彩色图像,需要将其分解为独立的R、G、B三个分量进行处理。对于灰度图像,直接对其像素值进行处理。将图像的每个像素值(0-255)转换为8位的二进制序列。例如,一个像素值为100的像素,其二进制表示为01100100。

3.2 位级置乱

位级置乱是加密过程中的关键步骤,旨在打破图像像素间的空间相关性。本算法采用基于混沌序列的位级置乱方法。

    3.3 位级扩散

    位级扩散的目的是使原始图像的微小变化能够引起加密图像的显著变化,从而抵抗差分攻击。本算法采用一种基于混沌序列的链式扩散机制。

    1. 生成扩散混沌序列: 再次使用混沌映射生成一个新的混沌序列,其初始值和控制参数可以与置乱阶段不同,以增加密钥空间。

    2. 链式异或扩散: 将经过位级置乱后的比特流再次进行链式异或操作。具体而言,可以设定一个初始的扩散值(例如,由混沌序列的某个值派生),然后将比特流中的每一个比特与前一个比特的加密结果以及扩散混沌序列中的相应比特进行异或操作。

    Ci=(Pi⊕Ci−1)⊕Di

    3.4 密钥生成与管理

    本算法的密钥主要包括:

      这些密钥参数都需要具有较高的精度,以保证混沌系统的敏感性。密钥的长度和随机性直接影响算法的安全性。建议采用足够长的密钥,并通过安全的密钥管理机制进行传输和存储。

      5. 结论

      本文提出了一种基于混沌映射的新型位级图像加密算法。该算法充分利用了混沌系统对初始条件的敏感性和其伪随机性,通过对图像的像素位进行置乱和扩散,有效地实现了图像的加密。实验结果表明,本算法具有以下优点:

      1. 良好的加密效果:

         加密后的图像呈现出完全的随机噪声状,无法辨认出原始图像信息。

      2. 高安全性:

         能够有效抵抗统计分析攻击和差分攻击,相邻像素相关性低,信息熵高。

      3. 大密钥空间:

         密钥参数为浮点数,通过控制精度可以实现足够大的密钥空间,抵抗穷举攻击。

      4. 对噪声的鲁棒性:

         位级操作使得算法对图像中的细微噪声具有一定的鲁棒性。

      该算法为图像加密领域提供了一种新的思路和方法,尤其适用于对安全性要求较高的图像传输和存储场景。未来的研究方向可以包括:探索更复杂的混沌系统或多混沌系统结合,以进一步提高算法的复杂性和安全性;研究算法在不同图像格式和不同应用场景下的性能表现;以及开发更高效的硬件实现方案,以满足实时图像加密的需求。

      ⛳️ 运行结果

      🔗 参考文献

      [1] 樊春霞,姜长生.一种基于混沌映射的图像加密算法[J].光学精密工程, 2004, 12(2).DOI:10.3321/j.issn:1004-924X.2004.02.011.

      [2] 樊春霞,姜长生.一种基于混沌映射的图像加密算法[J].光学精密工程, 2004.DOI:JournalArticle/5af1c220c095d718d8ec2c84.

      [3] 王娣,邓家先,邓海涛.一种新的基于离散混沌系统和SHA-1的图像加密算法[J].计算机应用研究, 2014, 31(10):4.DOI:10.3969/j.issn.1001-3695.2014.10.054.

      📣 部分代码

      🎈 部分理论引用网络文献,若有侵权联系博主删除

       👇 关注我领取海量matlab电子书和数学建模资料 

      🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

      🌈 各类智能优化算法改进及应用
      生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
      🌈 机器学习和深度学习时序、回归、分类、聚类和降维

      2.1 bp时序、回归预测和分类

      2.2 ENS声神经网络时序、回归预测和分类

      2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

      2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

      2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
      2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

      2.7 ELMAN递归神经网络时序、回归\预测和分类

      2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

      2.9 RBF径向基神经网络时序、回归预测和分类

      2.10 DBN深度置信网络时序、回归预测和分类
      2.11 FNN模糊神经网络时序、回归预测
      2.12 RF随机森林时序、回归预测和分类
      2.13 BLS宽度学习时序、回归预测和分类
      2.14 PNN脉冲神经网络分类
      2.15 模糊小波神经网络预测和分类
      2.16 时序、回归预测和分类
      2.17 时序、回归预测预测和分类
      2.18 XGBOOST集成学习时序、回归预测预测和分类
      2.19 Transform各类组合时序、回归预测预测和分类
      方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
      🌈图像处理方面
      图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
      🌈 路径规划方面
      旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
      🌈 无人机应用方面
      无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
      🌈 通信方面
      传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
      🌈 信号处理方面
      信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
      🌈电力系统方面
      微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
      🌈 元胞自动机方面
      交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
      🌈 雷达方面
      卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
      🌈 车间调度
      零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

      👇

      评论
      添加红包

      请填写红包祝福语或标题

      红包个数最小为10个

      红包金额最低5元

      当前余额3.43前往充值 >
      需支付:10.00
      成就一亿技术人!
      领取后你会自动成为博主和红包主的粉丝 规则
      hope_wisdom
      发出的红包
      实付
      使用余额支付
      点击重新获取
      扫码支付
      钱包余额 0

      抵扣说明:

      1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
      2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

      余额充值