基于ELM-Adaboost的自行车租赁数量预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本研究针对自行车租赁数量预测的复杂性与不确定性,提出基于 ELM-Adaboost 的组合预测模型。通过收集多源数据并进行预处理,运用极限学习机(ELM)快速学习数据特征,结合 Adaboost 算法提升模型预测精度与泛化能力。实验结果表明,该模型在自行车租赁数量预测上较传统模型和单一算法具有更高的准确性与稳定性,为自行车租赁企业优化资源配置、制定运营策略提供科学依据。

关键词

自行车租赁数量预测;极限学习机;Adaboost;组合预测模型

一、引言

随着城市绿色出行理念的普及,自行车租赁行业迅速发展。然而,自行车租赁数量受时间、天气、节假日、周边交通状况等多种因素影响,呈现出复杂的非线性变化特征。准确预测自行车租赁数量,有助于企业合理调配车辆、降低运营成本、提高服务质量,对促进自行车租赁行业的可持续发展具有重要意义。

传统的自行车租赁数量预测方法,如时间序列分析、回归分析等,在处理非线性数据时存在局限性,难以准确捕捉租赁数据的复杂规律。机器学习算法如支持向量机(SVM)、人工神经网络(ANN)等虽在一定程度上提升了预测性能,但存在训练时间长、易陷入局部最优等问题。极限学习机(ELM)作为一种新型的单隐层前馈神经网络,具有学习速度快、泛化能力强的特点;Adaboost 是一种集成学习算法,通过组合多个弱学习器形成强学习器,能够有效提高模型的预测精度。因此,将 ELM 与 Adaboost 相结合,构建 ELM-Adaboost 模型用于自行车租赁数量预测,有望克服传统方法和单一算法的不足,提高预测的准确性和可靠性。

二、相关研究

(一)传统自行车租赁数量预测方法

传统的自行车租赁数量预测方法主要包括统计方法和经典机器学习方法。统计方法如 ARIMA 模型,基于数据的自相关性和差分平稳性进行预测,但自行车租赁数据受多种随机因素影响,具有较强的非平稳性和非线性,导致 ARIMA 模型预测精度有限。经典机器学习方法如线性回归、决策树等,依赖人工设计特征,难以自动挖掘数据的潜在特征,且在处理复杂数据时泛化能力较弱,无法满足实际预测需求。

(二)机器学习在自行车租赁数量预测中的应用

近年来,机器学习算法在自行车租赁数量预测中得到广泛应用。支持向量机(SVM)通过寻找最优超平面实现分类和回归,在处理小样本数据时具有一定优势,但在选择核函数和参数调优方面存在困难,影响预测效果。人工神经网络(ANN),如多层感知机(MLP),能够通过训练学习数据的复杂关系,但存在训练时间长、易过拟合等问题。为了提高预测精度,研究人员尝试将不同的机器学习算法进行融合,如将 SVM 与神经网络结合,取得了一定的改进效果,但仍需进一步优化模型性能。

(三)ELM 和 Adaboost 算法的研究与应用

极限学习机(ELM)由黄广斌教授提出,其核心思想是随机初始化输入层与隐层之间的连接权值和隐层神经元的阈值,且在训练过程中无需调整这些参数,只需计算输出层的权值,大大缩短了训练时间,同时具有良好的泛化能力,已在模式识别、数据分类、回归预测等多个领域得到应用 。Adaboost 算法是一种迭代算法,通过不断调整训练样本的权重,使后续的弱学习器更加关注之前被错误分类的样本,最终将多个弱学习器组合成一个强学习器,有效提高了模型的预测精度和鲁棒性,在图像识别、数据挖掘等领域表现出色。将 ELM 与 Adaboost 相结合,为自行车租赁数量预测提供了新的思路和方法。

三、数据预处理

(一)数据获取

本研究收集某城市自行车租赁平台的历史租赁数据,数据包含租赁时间、租赁站点、租赁数量、归还时间等信息。同时,获取该城市同期的气象数据(温度、湿度、降雨量、天气状况)、节假日数据以及交通流量数据,多源数据的整合能够更全面地反映影响自行车租赁数量的因素。

(二)数据清洗

原始数据中存在缺失值和异常值。对于缺失值,采用不同的处理策略:对于数值型数据(如温度、租赁数量)的缺失值,若缺失比例较小,使用均值或中位数填充;若缺失比例较大,则采用插值法进行填充。对于分类数据(如天气状况)的缺失值,根据相邻时间点的天气情况进行填充。对于异常值,通过箱线图等方法进行识别,剔除明显不合理的数据,如租赁数量为负数或异常高的记录。

(三)特征工程

  1. 时间特征提取:从租赁时间中提取年、月、日、小时、星期、是否工作日等时间特征。这些时间特征能够反映出自行车租赁数量在不同时间尺度上的变化规律,例如工作日早晚高峰租赁量较高,周末租赁模式有所不同。
  1. 编码处理:对天气状况、节假日等分类变量进行独热编码,将其转换为数值型向量,便于模型处理。
  1. 归一化处理:采用最小 - 最大归一化方法,将数值型特征(如温度、租赁数量、交通流量等)归一化到 [0, 1] 区间,消除量纲差异对模型训练的影响,加快模型收敛速度。

(四)数据集划分

将预处理后的数据按照 7:1:2 的比例划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于调整模型的超参数,测试集用于评估模型的泛化能力。

四、ELM-Adaboost 模型构建

图片

图片

图片

五、结论与展望

(一)研究结论

本研究成功构建了基于 ELM-Adaboost 的自行车租赁数量预测模型,通过对多源数据的有效预处理和模型的合理构建与训练,在实验中取得了优于传统方法和单一算法的预测效果。该模型能够准确捕捉自行车租赁数量的变化规律,为自行车租赁企业优化资源配置、制定运营策略提供了科学依据。

(二)研究展望

未来研究可以从以下几个方面展开:一是进一步探索更多与自行车租赁数量相关的影响因素,如城市人口分布、用户出行习惯等,丰富数据特征,提升模型预测能力;二是尝试改进 ELM 和 Adaboost 算法,或与其他先进的机器学习算法相结合,优化模型结构;三是将模型应用于实际场景,通过实际运营数据不断验证和完善模型,提高模型的实用性和可靠性。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 马立新,尹晶晶,郑晓栋,等.智能用电环境下电力负荷预测方法的研究[J].机电工程, 2015, 32(9):5.DOI:10.3969/j.issn.1001-4551.2015.09.018.

[2] 黄海波,李人宪,黄晓蓉,等.基于Adaboost算法的车内噪声声品质预测[J].汽车工程, 2016, 38(9):6.DOI:10.3969/j.issn.1000-680X.2016.09.013.

[3] 潘礼正,王顺超,丁忆,等.基于全视域特征表征与ELM-Adaboost方法的情绪辨识研究[J].仪器仪表学报, 2022(11):162-171.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值