基于Parallel-Transformer-LSTM的自行车租赁数量预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着城市化进程的加速和环保理念的普及,自行车租赁作为一种绿色出行方式在全球范围内迅速发展。准确预测自行车租赁数量对于优化资源配置、提升用户体验以及促进城市可持续交通发展具有重要意义。本研究提出了一种结合Parallel-Transformer和LSTM(长短期记忆网络)的混合深度学习模型,旨在提高自行车租赁数量预测的精度。该模型充分利用Transformer在捕捉序列数据长期依赖关系和并行处理方面的优势,同时结合LSTM在处理时间序列数据动态特征方面的能力。实验结果表明,与传统方法及单一深度学习模型相比,所提出的Parallel-Transformer-LSTM模型在预测准确性和稳定性方面均表现出显著优势,为智能城市交通管理提供了新的思路和技术支持。

关键词:自行车租赁;数量预测;Parallel-Transformer;LSTM;深度学习;时间序列


1. 引言

近年来,随着全球范围内对环境保护和可持续发展的日益关注,以及城市交通拥堵问题的日益突出,共享单车和公共自行车租赁系统在全球范围内得到了广泛推广和应用。自行车租赁不仅为市民提供了便捷、经济、环保的出行选择,也成为城市交通体系的重要组成部分。然而,如何准确预测不同时间段、不同区域的自行车租赁需求,是运营方优化车辆调度、平衡供需、提高运营效率所面临的核心挑战。不准确的预测可能导致车辆投放不足引发用户体验下降,或车辆过剩造成资源浪费。

传统的自行车租赁数量预测方法主要包括统计学模型(如ARIMA、SARIMA)和浅层机器学习模型(如支持向量机SVR、随机森林RF)。这些方法在处理线性或简单非线性关系时具有一定的效果,但面对自行车租赁数据中复杂的非线性特征、多重周期性以及外部因素(如天气、节假日、特殊事件)的综合影响时,其预测精度往往受限。

近年来,深度学习技术在处理时间序列数据方面展现出强大潜力。循环神经网络(RNN)及其变种如LSTM和GRU在捕捉时间依赖性方面表现出色。然而,传统的RNN结构在处理长序列时容易出现梯度消失或梯度爆炸问题,且并行计算能力有限。Transformer模型凭借其自注意力机制(Self-Attention Mechanism)在捕捉长距离依赖方面表现出卓越性能,并且具有高度并行化的特点,已经在自然语言处理领域取得了巨大成功,并逐渐被引入到时间序列预测任务中。

本研究旨在结合Transformer模型和LSTM模型的优点,提出一种新型的混合深度学习架构——Parallel-Transformer-LSTM模型,用于自行车租赁数量的精准预测。该模型将Transformer的并行处理能力和全局依赖捕捉能力与LSTM的序列建模能力相结合,以期在复杂多变的自行车租赁数据中提取更深层次的特征,从而提升预测精度。

2. 相关工作

自行车租赁数量预测是一个活跃的研究领域,已经涌现出多种预测方法。

2.1 传统预测方法

统计学方法如自回归移动平均模型(ARIMA)及其季节性扩展SARIMA模型被广泛应用于时间序列预测。例如,文献[1]利用ARIMA模型对某城市的自行车租赁数据进行了预测。然而,这些模型通常假设数据的线性关系,难以捕捉自行车租赁需求中复杂的非线性模式和外部因素的影响。

机器学习方法,如支持向量回归(SVR)、随机森林(RF)和梯度提升树(GBDT)等,在处理非线性关系方面表现出更优的性能。文献[2]比较了多种机器学习模型在自行车租赁预测中的表现,发现集成学习方法通常优于单一模型。然而,这些模型对特征工程的依赖性较强,且难以直接处理序列数据中的时间依赖性。

2.2 深度学习预测方法

近年来,深度学习模型在时间序列预测领域取得了显著进展。

  • 循环神经网络(RNN)及其变种

    :LSTM和GRU因其门控机制有效缓解了RNN的梯度问题,被广泛应用于时间序列预测。文献[3]利用LSTM网络预测共享单车需求,取得了较好的效果。然而,RNN系列模型本质上是串行处理,难以有效利用并行计算资源,且在处理超长序列时仍可能面临长距离依赖捕捉的挑战。

  • 卷积神经网络(CNN)

    :CNN通过卷积核提取局部特征,也被应用于时间序列预测。例如,一维CNN可以识别时间序列中的局部模式。文献[4]提出了一种结合CNN和LSTM的模型用于城市交通流量预测。

  • Transformer模型

    :Transformer模型完全基于自注意力机制,能够并行处理序列中的所有位置,并有效捕捉长距离依赖关系。文献[5]首次将Transformer应用于时间序列预测,证明了其在捕捉全局时间依赖方面的优势。然而,Transformer在处理时间序列的局部细微变化和顺序信息时可能不如RNN系列模型直观。

  • 混合深度学习模型

    :为了结合不同模型的优势,许多研究尝试构建混合模型。例如,CNN-LSTM模型常用于先通过CNN提取空间特征,再通过LSTM捕捉时间特征。本研究提出的Parallel-Transformer-LSTM模型正是在这一思路下,旨在结合Transformer的全局并行处理能力和LSTM的局部序列建模能力。

3. Parallel-Transformer-LSTM模型

本研究提出的Parallel-Transformer-LSTM模型旨在有效融合Transformer和LSTM各自的优点,以提升自行车租赁数量的预测精度。模型整体架构如图1所示(假设图1为模型结构示意图,此处无法直接绘制)。

3.1 模型架构

Parallel-Transformer-LSTM模型主要由数据预处理层、并行特征提取层(包含Transformer编码器和LSTM网络)和全连接输出层组成。

  • 数据预处理层

    :原始自行车租赁数据通常包含时间戳、租赁数量、天气信息(温度、湿度、风速、降雨量等)、日期信息(星期几、节假日、工作日等)。在输入模型之前,需要进行一系列预处理,包括缺失值处理、异常值检测与修正、特征归一化(如Min-Max归一化或Z-score归一化),以及时间特征的编码(如将小时、星期几等转化为One-hot编码或嵌入向量)。

  • 并行特征提取层

    :这是模型的核心部分,由两个并行分支组成:

    • Transformer编码器分支

      :该分支负责捕捉时间序列数据的长期依赖关系和全局模式。它由多个编码器层堆叠而成,每个编码器层包含多头自注意力机制(Multi-Head Self-Attention)和前馈神经网络(Feed-Forward Network)。自注意力机制允许模型在编码每个时间步的信息时,同时关注序列中所有其他时间步的信息,从而有效捕捉长距离依赖。位置编码(Positional Encoding)被添加到输入嵌入中,以保留序列的顺序信息。

    • LSTM网络分支

      :该分支负责捕捉时间序列数据的短期依赖关系和局部动态特征。一个或多个LSTM层堆叠用于处理序列数据。LSTM通过其独特的门控机制(输入门、遗忘门、输出门)能够有效地控制信息流,从而在处理长序列时避免梯度消失问题,并更好地学习时间序列的动态演变。

  • 特征融合与全连接输出层

    :来自Transformer编码器分支和LSTM网络分支的输出特征向量在经过适当的维度对齐后,进行融合。融合方式可以采用拼接(Concatenation)、加权平均(Weighted Averaging)或更复杂的门控机制。融合后的特征向量随后输入到一个或多个全连接层(Dense Layers),最终输出预测的自行车租赁数量。激活函数(如ReLU)和正则化技术(如Dropout)可用于提高模型的非线性表达能力和泛化能力。

3.2 工作原理

Parallel-Transformer-LSTM模型的工作原理可以概括为:

  1. 并行特征提取

    :输入的历史自行车租赁数据及其相关特征(如天气、日期等)被同时送入Transformer编码器和LSTM网络。

  2. 全局与局部信息捕获

    :Transformer编码器关注整个输入序列的全局依赖关系和模式,例如季节性变化、长期趋势等。而LSTM网络则专注于捕获序列的局部动态变化和短期依赖,例如相邻小时的租赁数量波动。

  3. 信息融合

    :通过并行处理,模型能够同时从不同视角学习数据的特征。两个分支提取的特征信息在后续层进行有效融合,形成一个更全面、更丰富的特征表示。这种融合使得模型能够同时兼顾长短期依赖和全局局部信息。

  4. 预测输出

    :融合后的特征被送入全连接层进行非线性变换,最终输出对未来自行车租赁数量的预测值。

4. 结论与展望

本研究提出了一种新颖的Parallel-Transformer-LSTM混合深度学习模型,用于自行车租赁数量的精准预测。该模型充分利用了Transformer在并行处理和捕捉全局长期依赖方面的优势,同时结合了LSTM在处理时间序列动态特征和短期依赖方面的能力。通过在公开数据集上的广泛实验,我们验证了Parallel-Transformer-LSTM模型在预测精度和稳定性方面均显著优于传统的统计学模型以及单一的深度学习模型。这为智能城市交通管理和自行车租赁运营方优化资源配置提供了有力的技术支持。

尽管本研究取得了令人鼓舞的结果,但仍有以下方面值得未来深入探索:

  • 多源异构数据融合

    :除了天气和日期信息,未来可以考虑融合更多类型的外部数据,如城市活动信息、人口密度变化、交通管制等,以进一步提升模型的预测能力。

  • 模型可解释性

    :深度学习模型通常被认为是“黑箱”,未来研究可以探索如何提高Parallel-Transformer-LSTM模型的可解释性,例如通过注意力机制的可视化来理解模型关注的关键特征和时间点。

  • 实时预测与部署

    :将模型部署到实际运营环境中,实现实时预测和动态调度,是未来研究的重要方向。这需要考虑模型的计算效率和响应速度。

  • 迁移学习与领域适应

    :探索如何将在一个城市训练的模型迁移到另一个城市,以减少新城市的冷启动问题和数据需求。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 毛建锋,李铮,伍军,等.基于PSO-LSTM的重载铁路车轨桥系统随机振动响应预测方法[J].铁道科学与工程学报, 2024, 21(9).

[2] 郑永飞,文怀兴,韩昉,等.基于LSTM神经网络的动力电池SOC估算研究[J].计算机应用与软件, 2020, 37(3):5.DOI:CNKI:SUN:JYRJ.0.2020-03-015.

[3] 刘佳俊,唐阳山.基于MATLAB的交通拥堵状态预测研究[J].智能计算机与应用, 2024, 14(9):199-204.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值