汉诺塔分析

一、自顶向下,逐渐求精

汉诺塔问题主要想将源柱上的盘子借助辅助柱按从大到小的顺序从上往下移动到目标柱
可以细分为三个子问题
1、如果源柱上只有一个盘子,直接移动到目标柱。
2、若源柱有n个盘子,将上面n-1个盘子通过目标柱移到辅助柱上,再将最大的盘子移到目标柱。
3、再将剩下的n-1个盘子通过源柱移动到目标柱。
细分问题的过程为自顶向下,细分问题后再对子问题进行细节操作为逐渐求精。

二、函数调用,递归分治

本问题主要实现为hanoi(int n, char pillarA, char pillarB, char pillarC);函数,用上栈模拟柱子更贴近事实,
通过递归重复调用hanoi函数并且根据(分治)三种情况(子问题)改变函数形参实现递归调用hanoi函数。

三、不要跨层分析

汉诺塔问题搬盘子时只能一个一个按顺序从上往下搬。

四、形参与实参

函数的形参是函数的接口,例如n表示源柱上的盘子数(即一个整型数),pillarA,pillarB,pillarC三个参数是字符型的,所以函数调用时实参必须也为一个整型数,三个代表柱子的字符(字母)。

五、有意义、规范的标识符

写代码时要有意识地使用完整的易于理解的单词,可以增加程序的可读性。

六、时间复杂度

本函数hanoi使用递归实现,由于有三个子问题,每次递归移动两个盘子,我们需要进行 n 次递归调用,每次递归调用需要进行 3 次移动操作,总的移动次数为 3^(n - 1),这是一个指数级别的复杂度O(2^n),当盘子变多的时候,时间复杂度增长巨大。

七、递归栈

八、空间复杂度

汉诺塔问题的空间复杂度为 O(n),其中 n 是圆盘的数量。这是因为在解决问题的过程中,我们需要使用一个递归栈来保存每个递归调用的状态。由于递归栈的深度等于递归调用的层数,因此空间复杂度为 O(n)。除了递归栈之外,我们还需要使用一些额外的变量来保存问题的状态,但这些变量的数量与圆盘的数量无关,因此不会影响空间复杂度。

总结

主要思想为:递归、分治
将整个问题概括出来,再将其分治递归自发调用自己。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Free Ever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值