数据结构与算法 模板 基础部分

Data Structure and Algorithm Template

Chapter1. 基础

快排

int q[maxn];

void quick_sort(int q[], int l, int r) {
    if (l >= r) {
        return;
    }
    int i = l - 1, j = r + 1, x = q[l + r >> 1];
    while (i < j) {
        do i++; while (q[i] < x);
        do j--; while (q[j] > x);
        if (i < j) {
            swap(q[i], q[j]);
        }
    }
    quick_sort(q, l, j);
    quick_sort(q, j + 1, r);
}

归并排序

int a[maxn], tmp[maxn];

void merge_sort(int q[], int l, int r) {
    if (l <= r) {
        return;
    }
    int mid = l + r >> 1;
    merge_sort(q, l, mid);
    merge_sort(q, mid + 1, r);
    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r) {
        if (q[i] <= q[j]) {
            tmp[k++] = q[i++];
        } else {
            tmp[k++] = q[j++];
        }
    }
    while (i <= mid) {
        tmp[k++] = q[i++];
    }
    while (j <= r) {
        tmp[k++] = q[j++];
    }
    for (i = l, j = 0; i <= r; i++, j++) {
        q[i] = tmp[j];
    }
}

整数二分查找

最优时间复杂度为 O ( 1 ) O(1) O(1) , 平均时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)

bool check(int x) {/*...*/} // 检查x是否满足性质

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int binary_search_1(int l, int r) {
    while (l < r) {
        int mid = l + r >> 1;
        if (check(mid)) {
            r = mid;
        } else {
            l = mid + 1;
        }
    }
    return l;
}

// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int binary_search_2(int l, int r) {
    while (l < r) {
        int mid = l + r > >> 1;
        if (check(mid)) {
            l = mid;
        } else {
            r = mid - 1;
        }
    }
    return l;
}

STL二分查找 : 定义于头文件**** , 查找首个不小于给定值元素的函数std : : lower_bound , 查找首个大于给定值的元素std : : upper_bound

三分法

三分法和二分法方法类似 , 但是每次操作需要在当前区间[l, r]内任取两点 lmid , rmid (lmid < rmid) . 如例图 , 如果 f(lmid) < f(rmid), 则在[rmid, r] 中函数必然单调递增 , 最小值所在点必然不在这个区间内 , 可以舍去这个区间 . 反之亦然 .

三分法例图

计算 lmid 和 rmid 时 , 需要防止数据溢出

while (r - l > eps) {
    mid = (lmid + rmid) / 2;
    lmid = mid - eps;
    rmid = mid + eps;
    if (f(lmid) < f(rmid)) {
        r = mid;
    } else {
        l = mid;
    }
}

浮点数二分查找

bool check(double x) {/*...*/} // 检查x是否满足性质

double binary_search_3(double l, double r) {
    const double eps = 1e-6; // 二分精度
    while (r - l > eps) {
        double mid = (l + r) / 2;
        if (check(mid)) {
            r = mid;
        } else {
            l = mid;
        }
    }
    return l;
}

高精度加法

// C = A + B, A和B都很大, 超过long long范围
vector<int> add(vector<int> &A, vector<int> &B) {
    if (A.size() < B.size()) {
        return add(B, A);
    }
    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size(); i++) {
        t += A[i];
        if (i < B.size()) {
            t += B[i];
        }
        C.push_back(t % 10);
        t /= 10;
    }
    if (t) {
        C.push_back(t);
    }
    return t;
}

void solve() {
    string a, b;
    cin >> a >> b;
    vector<int> A, B;
    for (int i = a.size() - 1; i >= 0; i--) {
        A.push_back(a[i] - '0');
    }
    for (int i = b.size() - 1; i >= 0; i--) {
        B.push_back(b[i] - '0');
    }
    auto C = add(A, B);
    for (int i = C.size() - 1; i >= 0; i--) {
        cout << C[i];
    }
}

高精度减法

// C = A - B, 满足A >= B, 且A和B都很大, 超出long long范围
vector<int> sub(vector<int> &A, vector<int> &B) {
    vector<int> C;
    for (int i = 0; i < A.size(); i++) {
        t = A[i] - t;
        if (i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10);
        if (t < 0) {
            t = 1;
        } else {
            t = 0;
        }
    }
    while (C.size() > 1 && C.back() == 0) {
        C.pop_back();
    }
    return C;
}

void solve() {
    string a, b;
    cin >> a >> b;
    vector<int> A, B;
    for (int i = a.size() - 1; i >= 0; i--) {
        A.push_back(a[i] - '0');
    }
    for (int i = b.size() - 1; i >= 0; i--) {
        B.push_back(b[i] - '0');
    }
    auto C = sub(A, B);
    for (int i = C.size() - 1; i >= 0; i--) {
        cout << C[i];
    }
}

高精度乘低精度

// C = A * b, A很大,超出long long范围,b一般不超过int
vector<int> mul(vector<int> &A, int b) {
    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size() || t; i++) {
        if (i < A.size()) {
            t += A[i] * b;
        }
        C.push_back(t % 10);
        t /= 10;
    }
    while (C.size() > 1 && C.back() == 0) {
        C.pop_back();
    }
    return C;
}

void solve() {
    string a;
    int b;
    cin >> a >> b;
    vecotr<int> A;
    for (int i = a.size() - 1; i >= 0; i--) {
    	A.push_back(a[i] - '0');    
    }
    auto C = mul(A, b);
    for (int i = C.size() - 1; i >= 0; i--) {
        cout << C[i];
    }
}

高精度除以低精度

// A / b = C, A很大,超过long long范围,b一般不超过int, r是余数
vector<int> div(vector<int> &A, int b, int &r) {
    vector<int> C;
    r = 0;
    for (int i = A.size() - 1; i >= 0; i--) {
        r = r * 10 + A[i];
        C.push_back(r / b);
        r %= b;
    }
    reverse(C.begin(), C.end());
    while (C.size() > 1 && C.back() == 0) {
        C.pop_back();
    }
    return C;
}

void solve() {
    string a;
    int b;
    cin >> a >> b;
    vector<int> A;
    for (int i = a.size() - 1; i >= 0; i--) {
        A.push_back(a[i] - '0');
    }
    int r = 0;
    auto C = div(A, b, r);
    for (int i = C.size() - 1; i >= 0; i--) {
        cout << C[i];
    }
    cout << '\n' << r << '\n';
}

一维前缀和

// 前缀和数组s[maxn], 原数组a[maxn];
s[i] = a[1] + a[2] + ... + a[i];
a[l] + a[l + 1] + ... + a[r] = s[r] - s[l - 1];

STL中前缀和函数 std : : partial_sum , 定义在头文件****中

二维前缀和

// 前缀和数组s[maxn][maxn], 原数组a[maxn][maxn];
s[i][j] = s[i - 1][j] + s[i][j - 1] + a[i][j] - s[i - 1][j - 1];
//以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵和为:
s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1];

一维差分

// 差分数组b[maxn], 原数组a[maxn];
b[i] = a[i] - a[i - 1];
//给原数组区间[l, r]中每个数加上c
b[l] += c, b[r + 1] -= c;

STL中差分函数 std : : adjacent_difference , 定义在头文件****中

二维差分

// 差分数组b[maxn][maxn], 原数组a[maxn][maxn];
// 给以(x1, y1)为左上角,以(x2, y2)为右下角的子矩阵中所有元素加上c
b[x1][y1] += c, b[x2 + 1][y1] -= c, b[x1][y2 + 1] -= c, b[x2 + 1][y2 + 1] += c;

位运算

求n的第k位数字:n >> k & 1;
返回n的最后一位1: lowbit(n) = n & -n;

双指针

for (int i = 0, j = 0; i < n; i++) {
    while (j < i && check(i. j)) j++;
    // 具体逻辑
}
// 常见问题:
//	(1)对于一个序列,用两个指针维护一段区间
// 	(2)对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作

离散化

离散化本质上可以看成是一种哈希 , 其保证数据在哈希之后仍然保持原来的全 / 偏序关系

用来离散化的可以是大整数 , 浮点数 , 字符串等

vector<int> alls; // 存储所有待离散化的值
sort(alls.begin(), alls.end()); // 将所有值排序
all.erase(unique(alls.begin(), alls.end()), alls.end()); // 去掉重复元素

// 二分求出x对应的离散化的值
int find(int x) {
    int l = 0, r = all.size() - 1;
    while (l < r) {
        int mid = l + r >> 1;
        if (alls[mid] >= x) {
            r = mid;
        } else {
            l = mid + 1;
        }
    }
    return r + 1;
}

区间合并

void merge(vector<pii> &segs) {
    vector<pii> res;
    sort(segs.begin(), segs.end());
    int st = -2e9, ed = -2e9;
    for (auto seg : segs) {
        if (ed < seg.first) {
            if (st != -2e9) res.push_back({st, ed});
            st = seg.first, ed = seg.second;
        } else {
            ed = max(ed, seg.second);
        }
    }
    if (st != -2e9) {
        res.push_back({st, ed});
    }
    segs = res;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值