题目来源:第十四届蓝桥杯大赛软件赛省赛B组
程序猿圈子里正流行一种很新的简写方法:对于一个字符串,只保留首位字符,将首位字符之间的所有字符用这部分的长度代替。例如internationalization简写成i18n,Kubernetes简写成K8s,Lanqiao简写成L5o等。
在本题中,我们规定长度大于等于 K K K 的字符串都可以采用这种简写方法(长度小于 K K K 的字符串不配使用这种缩写)
给定一个字符串 S S S 和两个字符 c 1 c_1 c1 和 c 2 c_2 c2 , 请你计算 S S S 有多少个以 c 1 c_1 c1 开头 c 2 c_2 c2 结尾的子串可以采用这种缩写?
输入: 第一行包含一个整数 K K K
第二行包含一个字符串 S S S 和两个字符 c 1 c_1 c1 和 c 2 c_2 c2
输出: 一个整数代表答案
Input Sample:
4 abababdb a b
Output Sample:
6
先说这道题的解题方法: 二分法or双指针, 两种方案的题解我都会给出来
首先先把字符串中 c 1 c_1 c1 和 c 2 c_2 c2 的下标单独用两个vector进行维护, 我们假设维护 c 1 c_1 c1 下标的vector为 a a a , 维护 c 2 c_2 c2 的为 b b b , 那么我们要遍历 a a a , 假设此时指向 a a a 的指针为 i i i , 指向 b b b 的指针为 j j j , 我们要在这个循环内部用双指针或者二分法来查找到使得 j − i + 1 = K j - i+ 1 = K j−i+1=K 的这个 j j j 值
下面给出题解代码, 共两个方案, 但核心思路都是一样的. 请注重思考, 不要无脑cv
方案1: 双指针法
#include <bits/stdc++.h>
using namespace std;
const int maxn = 55;
vector<int> a, b;
void io() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(false);
}
int main() {
io();
int k;
cin >> k;
string s;
char c1, c2;
cin >> s >> c1 >> c2;
int res = 0;
for (int i = 0; i < s.length(); i++) {
if (s[i] == c1) {
a.push_back(i);
}
if (s[i] == c2) {
b.push_back(i);
}
}
for (int i = 0, j = 0; i < a.size(); i++) {
while (j < b.size() && b[j] - a[i] + 1 < k) {
j++;
}
res += (b.size() - j);
}
cout << res << '\n';
return 0;
}
方案2: 二分法
#include <bits/stdc++.h>
using namespace std;
const int maxn = 55;
vector<int> a, b;
void io() {
cin.tie(0);
cout.tie(0);
ios::sync_with_stdio(false);
}
int main() {
io();
int k;
cin >> k;
string s;
char c1, c2;
cin >> s >> c1 >> c2;
int res = 0;
for (int i = 0; i < s.length(); i++) {
if (s[i] == c1) {
a.push_back(i);
}
if (s[i] == c2) {
b.push_back(i);
}
}
for (int i = 0; i < a.size(); i++) {
while (l <= r) {
int mid = l + r >> 1;
if (b[mid] - a[i] + 1 > k) {
r = mid - 1;
} else if (b[mid] - a[i] + 1 == k) {
res += (b.size() - mid);
break;
} else {
l = mid + 1;
}
}
}
cout << res << '\n';
return 0;
}