1. 什么是动态规划?
动态规划(Dynamic Programming)是一种解决多阶段决策问题的优化方法。它通常用于解决具有重叠子问题和最优子结构性质的问题,能够将一个大问题分解为多个重叠的子问题,并通过存储子问题的解来避免重复计算,从而提高算法效率。
动态规划的基本思想是将原问题分解为若干子问题,先求解子问题的解,然后将这些子问题的解组合起来,逐步推导出原问题的解。为了避免重复计算,动态规划算法通常采用表格(数组)来存储已经求解的子问题的解,这种表格通常称为动态规划(dp)表。
2. 动态规划算法的解题流程
动态规划算法的一般步骤如下:
定义状态: 明确定义问题的状态,将原问题转化为具有重叠子问题的子问题。在解题中体现为确认dp表中每一个格子表示什么。
找到状态转移方程: 建立子问题之间的递推关系,通过状态转移方程描述问题的最优子结构。在解题中体现为dp表如何去填写。
初始化: 初始化动态规划表,将边界状态的值填入表中。在解题中,初始化的目的是为了保证最后得到的结果是正确的。
逐步计算: 从边界状态开始,按照状态转移方程逐步计算并填充动态规划表。在解题中,体现为确认填dp表的方向。
解读结果: 根据动态规划表中的结果得到原问题的解。在解题中,体现为返回正确结果。
3. 应用实例
①斐波那契数列模型
1. 第N个泰波那契数
题目链接:1137. 第 N 个泰波那契数 - 力扣(LeetCode)
解析:看完这道题,我们分析这个题目可以发现,题目已经将几乎动态规划的所有步骤告诉了我们,我们只需要按照他说的完成流程即可,我们定义dp[i]表示第i个泰波那契数,我们的动态转移方程为 dp[i] = dp[i-1] + dp[i-2] + dp[i-3],而初始化要想得到正确结果,我们需要将dp[0] = 0, dp[1] = dp[2] = 1,填表方向则是从左向右从第3个位置开始填,最后返回dp[n]即可(n为0,1,2时需要进行特殊判断),代码如下
class Solution
{
public:
int tribonacci(int n)
{
if (n == 0) return 0;
if (n <= 2) return 1;
vector<int> dp(n+1);
dp[1] = dp[2] = 1;
for (int i = 3; i <= n; i++)
dp[i] = dp[i-1] + dp[i-2] + dp[i-3];
return dp[n];
}
};
2. 三步问题
题目链接:面试题 08.01. 三步问题 - 力扣(LeetCode)
解析:分析这个题目,我们可以创建一个大小为(n+1)的dp表,我们定义dp[i]为到小孩上到第i个阶梯共有多少种方式,根据题目我们可以发现,要想到达dp[i]这个位置,我们有三种方法上来,分别是从前三个位置上来,即
所以我们可以得到dp[i]的动态转移方程:dp[i] = dp[i-1] + dp[i-2] + dp[i-3],初始化时,只有前三个台阶需要特殊处理,由于一开始就处于第0个台阶因此dp[0]=1,到第一个台阶只有一种方法,所以dp[1] = 1,到第二个台阶有2种方法,所以dp[2] = 2,由于题目中是从下往上跳,因此填表顺序为从第三个台阶开始从左向右填,最终返回dp[n]即可,代码如下
class Solution
{
public:
int waysToStep(int n)
{
if (n <= 1) return 1;
if (n == 2) return 2;
int mod = 1e9 + 7;
vector<long long> dp(n+1);
dp[0] = dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++)
dp[i] = (dp[i-1] + dp[i-2] + dp[i-3]) % mod;
return dp[n];
}
};
3. 使用最小花费爬楼梯
题目链接:746. 使用最小花费爬楼梯 - 力扣(LeetCode)
解析:分析题目,我们可以定义dp[i]表示到第i个阶梯的最小花费,而要想到达第i个阶梯,要么只能从第i-1个阶梯来,要么只能从i-2个阶梯来,我们只需要最小的花费,所以动态转移方程如下 dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);,由于可以选择下标从0或1的阶梯开始爬,因此我们无需初始化,填表顺序为从前往后填,最后返回dp[n]即可,代码如下
class Solution
{
public:
int minCostClimbingStairs(vector<int>& cost)
{
int n = cost.size();
vector<int> dp(n+1);
for(int i = 2; i <= n; i++)
dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);
return dp[n];
}
};
除了从左向右填表外,我们还可以从右向左填表,定义dp[i]表示从第i个阶梯开始到达楼顶的最小花费,从第i个阶梯向后移动,要么只能移动一步要么只能移动两步,我们需要得到其中较小的一种情况,因此有 dp[i] = min(dp[i+1], dp[i+2]) + cost[i],由于从倒数第一和倒数第二个阶梯都能直接到达楼顶,因此我们需要初始化dp[n-1] = cost[n-1], dp[n-2] = cost[n-2], 填表时从后往前填即可,最终返回dp[0]与dp[1]中的较小值,代码如下
class Solution
{
public:
int minCostClimbingStairs(vector<int>& cost)
{
int n = cost.size();
vector<int> dp(n+1);
dp[n-1] = cost[n-1];
dp[n-2] = cost[n-2];
for(int i = n - 3; i >= 0; i--)
dp[i] = min(dp[i+1], dp[i+2]) + cost[i];
return min(dp[0], dp[1]);
}
};
4. 解码方法
解析:分析这个题目,我们可以定义dp[i]表示到达第i个字符时共有多少种解码方法,若当前单个字符能够解码(不为'0'),则表明当前字符是一种解码方法,此时该字符可以与前面的串形成一种编码即dp[i-1],若当前字符不能够解码(为'0'),则表明当前字符不是一种解码方式,此时dp[i]就置为0;若当前字符能与前一个字符进行解码,则表明这两个字符是一种解码方法,即dp[i-2],若不能形成,则dp[i]置于0,对于初始化我们只需要知道第一个字符是否为'0'即可,是的话dp[0] = 0,不是的话dp[0] = 1,dp[1]有0,1,2三种情况,填表顺序为从左往右填,最终返回dp[n-1]即可,代码如下
class Solution
{
public:
int numDecodings(string s)
{
int n = s.size();
vector<int> dp(n);
if (s[0] != '0') dp[0] = 1;
if (n == 1) return dp[0];
int code = stoi(s.substr(0, 2));
if (s[1] != '0' && s[0] != '0') dp[1]++;
if (code >= 10 && code <= 26) dp[1]++;
for (int i = 2; i < n; i++)
{
if (s[i] != '0') dp[i] += dp[i-1];
code = stoi(s.substr(i-1, 2));
if (code >= 10 && code <= 26) dp[i] += dp[i-2];
}
return dp[n-1];
}
};
②路径问题
1. 不同路径
解析:分析题目,我们可以规定dp[i][j]表示到达(i, j)位置的所有路径数,由于机器人每次只能向下或者向右移动,因此对于一个dp[i][j]它只能从左侧过来,或者从上方下来,即 dp[i][j] = dp[i-1][j] + dp[i][j-1],为了免除边界处理的情况,我们可以人为的为dp表填上一行,防止i-1与j-1越界,即直接初始化dp大小为(m+1)*(n+1),此时要注意,由于我们添加了一行因此原数组的位置的映射关系发生了改变,即dp[i][j]表示的是到达(i-1, j-1)位置的路径数,为了保证结果的正确我们可以挑选dp[0][1] = 1 或者 dp[1][0] = 1,填表顺序为从左向右,从上至下,最后返回dp[m][n]即可,代码如下
class Solution
{
public:
int uniquePaths(int m, int n)
{
vector<vector<int>> dp(m+1, vector<int>(n+1));
dp[0][1] = 1;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
dp[i][j] = dp[i-1][j] + dp[i][j-1];
return dp[m][n];
}
};
2. 不同路径Ⅱ
题目链接:63. 不同路径 II - 力扣(LeetCode)
解析:这道题整体的思路与上一题类似,但是这道题在遇见1的时候是到达不了这个地方的,此时将该位置置为0即可(注意下标间的映射为dp[i][j]对应ob[i-1][j-1]),代码如下
class Solution
{
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid)
{
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<vector<int>> dp(m+1, vector<int>(n+1));
dp[0][1] = 1;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
if (obstacleGrid[i-1][j-1] == 1) dp[i][j] = 0;
else dp[i][j] = dp[i-1][j] + dp[i][j-1];
return dp[m][n];
}
};
3. 珠宝的最高价值
题目链接:LCR 166. 珠宝的最高价值 - 力扣(LeetCode)
解析:分析这道题,我们可以规定dp[i][j]表示到达(i, j)位置时拿取珠宝的最大价值,由于该位置只能从左边或者上边得来,因此我们每次拿取当前珠宝数较大的一方即可,即 dp[i][j] = max(dp[i-1][j] , dp[i][j-1]) + frame[i-1][j-1]; 对于初始化,我们只需要拓宽一行一列即可,填表顺序为从左到右从上至下,最终返回dp[m][n]即可,代码如下
class Solution
{
public:
int jewelleryValue(vector<vector<int>>& frame)
{
int m = frame.size(), n = frame[0].size();
vector<vector<int>> dp(m+1, vector<int>(n+1));
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + frame[i-1][j-1];
return dp[m][n];
}
};
4. 下降路径最小和
题目链接:931. 下降路径最小和 - 力扣(LeetCode)
解析:分析这道题目,我们可以规定dp[i][j]代表到达(i, j)位置的最小路径和,每一个位置应该由上一行临近的三个方向中的最小值来决定,即 dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i-1][j+1])) + matrix[i-1][j-1],对于这道题为了防止出界,我们应该补上第一行,第一列与最后一列,其中为了最终答案的正确,我们应该使第一行的值都为0,剩余补上的列都初始化为INT_MAX保证最终结果正确,填表顺序为从左到右从上到下,最终返回最后一行中的最小值即可,代码如下
class Solution
{
public:
int minFallingPathSum(vector<vector<int>>& matrix)
{
int m = matrix.size(), n = matrix[0].size();
vector<vector<int>> dp(m+1, vector<int>(n+2));
for (int i = 1; i <= m; i++) dp[i][0] = dp[i][n+1] = INT_MAX;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i-1][j+1])) + matrix[i-1][j-1];
int ret = INT_MAX;
for (auto& e : dp[m]) ret = min(ret, e);
return ret;
}
};
5. 最小路径和
解析:分析题目,我们可以定义dp[i][j]表示到达(i, j)时最小的路径和,由于只能从上左两个方向来,我们需要得到最小的路径和,因此我们可以得到动态转移方程: dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i-1][j-1]; 初始化就选择多一行多一列,为了保证最后的结果正确我们需要将所有位置初始化为INT_MAX,再将dp[0][1] = dp[1][0]初始化为0,最后按从左往右从上到下填表,最后返回dp[m][n]即可,代码如下
class Solution
{
public:
int minPathSum(vector<vector<int>>& grid)
{
int m = grid.size(), n = grid[0].size();
vector<vector<int>> dp(m+1, vector<int>(n+1, INT_MAX));
dp[0][1] = dp[1][0] = 0;
for (int i = 1; i <= m; i++)
for (int j = 1; j <= n; j++)
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + grid[i-1][j-1];
return dp[m][n];
}
};
③简单多状态dp问题
1. 按摩师
题目链接:面试题 17.16. 按摩师 - 力扣(LeetCode)
解析:分析题意,我们规定dp[i]表示到i位置时当前最优的预约集合,根据题意我们在两次预约之间可以间隔很远,且两次预约不能相邻,那么对于每一位置的预约,我们都有选或不选两种情况,我们可以分别使用f和g两个表来分别表示选与不选两种情况,即
对于表f,我们有 f[i] = g[i-1] + nums[i];
对于表g,我们有 g[i] = max(f[i-1], g[i-1]);
在了解了两个表的动态转移方程之后,我们再对他们进行初始化,f表表示要选所以f[0] = nums[0],而g表表示不选所以g[0] = 0,同时从左往右填两个表,最终返回f[n-1]和g[n-1]中的最大值,代码如下
class Solution
{
public:
int massage(vector<int>& nums)
{
int n = nums.size();
if (n == 0) return 0;
vector<int> f(n);
vector<int> g(n);
f[0] = nums[0];
for (int i = 1; i < n; i++)
{
f[i] = g[i-1] + nums[i];
g[i] = max(f[i-1], g[i-1]);
}
return max(f[n-1], g[n-1]);
}
};
2. 打家劫舍Ⅱ
题目链接:213. 打家劫舍 II - 力扣(LeetCode)
解析:这道题与第一题相似,我们定义dp[i]表示到第i家为止我们偷窃到的最高金额,同样的我们可以创建f与g两个表来分别表示是否偷窃第i家,其中f表表示偷取第i家,g表表示不偷取第i家,对于f表有 f[i] = g[i-1] + nums[i]; 对于g 表有 g[i] = max(f[i-1], g[i-1]);,根据题目要求,如果选择偷窃了第一家就不能偷窃第二家与最后一家,所以我们可以问题转换为两种情况,即
其中,f1表示要偷窃第一家,所以要从第三家偷到倒数第二家,初始化f1[2] = nums[2],f2表示不偷窃第一家,所以要从第二家偷到最后一家,初始化f2[1] = nums[1],最终代码如下
class Solution
{
public:
int rob(vector<int>& nums)
{
int n = nums.size();
vector<int> f1(n), f2(n);
vector<int> g1(n), g2(n);
int res1 = 0;
// f1表示偷窃第一家
if (n <= 2) res1 = nums[0];
else
{
f1[2] = nums[2];
for (int i = 3; i <n-1; i++)
{
f1[i] = g1[i-1] + nums[i];
g1[i] = max(f1[i-1], g1[i-1]);
}
res1 = nums[0] + max(f1[n-2], g1[n-2]);
}
int res2 = 0;
// f2表示不偷第一家
if (n == 1) res2 = 0;
else
{
f2[1] = nums[1];
for (int i = 2; i < n; i++)
{
g2[i] = max(f2[i-1], g2[i-1]);
f2[i] = g2[i-1] + nums[i];
}
res2 = max(f2[n-1], g2[n-1]);
}
return max(res1, res2);
}
};
看起来分情况可能较多,可以采取封装一个子函数来简化代码。
3. 删除并获得点数
题目链接:740. 删除并获得点数 - 力扣(LeetCode)
④子数组问题
1. 最大子数组和
题目链接:53. 最大子数组和 - 力扣(LeetCode)
解析:分析题目,我们可以规定dp[i]表示:以i位置为结尾的最大子数组和,那么有
我们需要的是最大的子数组和,因此动态转移方程为dp[i] = max(nums[i], dp[i-1] + nums[i]),在这里由于出现了i-1我们可以在dp表前添加一个虚拟节点,根据动态转移方程,我们只需要将dp[0]=0,即可保证最后的填表结果正确,由于任何一个位置都有可能是结果,因此我们需要遍历整个dp表,拿到其中的最大值并返回,在这之中需要我们注意的是由于我们添加了一个虚拟节点,因此对应原数组的下标关系都应该为nums[i-1],代码如下
class Solution
{
public:
int maxSubArray(vector<int>& nums)
{
int n = nums.size();
if (n == 1) return nums[0];
vector<int> dp(n+1);
int ret = INT_MIN;
for (int i = 1; i <= n; i++)
{
dp[i] = max(nums[i-1], dp[i-1] + nums[i-1]);
ret = max(ret, dp[i]);
}
return ret;
}
};
2. 环形子数组的最大和
题目链接:918. 环形子数组的最大和 - 力扣(LeetCode)
解析:分析题目,我们还是可以规定dp[i]表示:以i位置为结尾的子数组最大和,分析有
因此我们需要两个dp表,在这里我使用f(最大)与g(最小)来表示,在从左向右填完所有的表后,有一种特殊情况即
最终代码如下
class Solution
{
public:
int maxSubarraySumCircular(vector<int>& nums)
{
int n = nums.size();
vector<int> f(n+1);
vector<int> g(n+1);
int fmax = INT_MIN, gmin = INT_MAX, sum = 0;
for (int i = 1; i <= n; i++)
{
f[i] = max(nums[i-1], f[i-1] + nums[i-1]);
g[i] = min(nums[i-1], g[i-1] + nums[i-1]);
fmax = max(fmax, f[i]), gmin = min(gmin, g[i]);
sum += nums[i-1];
}
return gmin == sum ? fmax : max(fmax, sum - gmin);
}
};
3. 乘积最大子数组
题目链接:152. 乘积最大子数组 - 力扣(LeetCode)
解析:分析题目,我们可以规定dp[i]表示:以i为结尾的最大乘积子数组,分析有
在这里,我们同样需要为dp表创建虚拟节点,而在这里需要将虚拟节点的值初始化为1才不会影响最终结果,填完所有的表后我们返回f表中的最大值即可,代码如下
class Solution
{
public:
int maxProduct(vector<int>& nums)
{
int n = nums.size();
vector<int> f(n+1);
auto g = f;
f[0] = g[0] = 1;
int ret = INT_MIN;
for (int i = 1; i <= n; i++)
{
int x = nums[i-1];
f[i] = max(x, max(x*f[i-1], x*g[i-1]));
g[i] = min(x, min(x*f[i-1], x*g[i-1]));
ret = max(ret, f[i]);
}
return ret;
}
};
⑤子序列问题
1. 最长递增子序列
题目链接:300. 最长递增子序列 - 力扣(LeetCode)
解析:分析题目,我们可以规定dp[i]表示:以i位置为结尾的最长递增子序列,分析有
最终由于每个位置都有可能是结果,所以我们需要返回dp表中的最大值,代码如下
class Solution
{
public:
int lengthOfLIS(vector<int>& nums)
{
int n = nums.size();
vector<int> dp(n, 1);
for (int i = 0; i < n; i++)
for (int j = 0; j < i; j++)
if (nums[j] < nums[i])
dp[i] = max(dp[j]+1, dp[i]);
int ret = 0;
for (auto& e : dp) ret = max(e, ret);
return ret;
}
};