【c进阶】数据的存储(学完以后保证让你对一些奇怪的现象茅塞顿开)

本文深入探讨了数据在内存中的存储方式,包括整型的原码、反码、补码表示,以及大小端模式的介绍。通过实例解析了不同数据类型的存储细节,如补码用于避免计算问题,大小端模式在存储数据时的差异。此外,还讨论了浮点型数据的存储规则,揭示了浮点数在内存中的表示方式,帮助读者理解这些基础知识如何影响程序行为和错误排查。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1,数据类型介绍

short

2,整形在内存中的存储

2.1原码,反码,补码

2.2大小端介绍

3,浮点型在内存中的存储

3.1一个例子、


大家好,博主今天来介绍数据在内存中的存储方式,学完以后保证让你能更深层次的理解曾经觉得奇怪的bug喔

1,数据类型介绍

基本内置类型:

char

short

int 

long

long long

float

double

类型的意义:1.决定了开辟空间的大小

2.  决定了看待内存空间的视角。

比如说:如果是int类型,就会把内存中存储的数据看作是有符号整数,首个二进制位被当做二进制位。但是如果是unsigned int 类型,就会被看作是无符号整数,首个二进制位会被当作是一个单纯的数据位。

2,整形在内存中的存储

2.1原码,反码,补码

这三种表示方法均有符号位和数值位之分:即第一位是符号位,之后都是数值位。

正数的原码反码补码相同

负数的则不同,具体如下:

1.原码:将数值转化位二进制就可以得到原码

2.反码:将原码的符号位不变,其余按位取反就可以得到反码

3.补码:将反码加1,就可以得到补码。

另外:由补码推出原码有两种方法

1:按照原码得到补码的方式逆推即可

2:将补码取反加1也可以得到原码

而至于为什么用补码,当然是使用原码会出现一系列问题,比如计算“1-1”.     可以自己手写去试试

2.2大小端介绍

什么是大小端?

大端:即大端存储模式,指的是将数据的低位保存在内存的高地址中,高位反之。

注:所谓低位高位,可以理解为:低位就是个位十位之类,高位是百位千位万位之类。(大概可以这么理解)

小端:即小端存储模式,指的是将数据的低位保存在内存的低地址中,高位反之。

这里有一道百度2015年的笔试题,就是有关大小端的。

题目:请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。

思路:可以自己随意设置一个数,比如0x00000001,并用char*来访问,如果得到的数是0,那就是大端,如果得到的是1,那就是小端。

练习题:

 分析:-1的补码是11111111   11111111   11111111  11111111

在存进三个类型时,都要发生截断,因为他们都只能存储1字节,也就是说,在内存中存储的都是11111111,化为16进制就是ff

而在打印的时候,不是int的数据要发生整形提升,此时要根据他们各自的类型进行提升,

char a:                由于是负数,前面全补1,即11111111   11111111   11111111  11111111,又因为是按照%d打印,所以11111111   11111111   11111111  11111111会被看作是有符号整数,它是负数,那么就要求出原码并输出原码的值,即-1

signed char b:   虽然加上了signed但是其实跟前者没啥差别。

unsigned char c:      由于是无符号数,直接在前面补零,

即00000000  00000000  00000000  11111111,又因为是按照%d打印 ,所以00000000  00000000  00000000  11111111会被看作是有符号整数,它是一个正数,补码即原码,

所以直接打印补码的数值。

运行结果如下:

就跟我们分析的一样耶。

分析:strlen计算的是'\0'之前的字符的数量,所以我们要找到'\0'的位置。

a[0]=-1   此处省略········   直到a[255]=-256 ,  -256的二进制数是1100000000,截断之后也就是00000000,即十六进制的00,也就是'\0',所以此程序打印的是255.

果然如此,再来看看内存中a[255]中存储的是什么?

果然是00!  bingo哒!

 

 再来看这俩题,他们有个共性,那就是变量均为无符号数unsigned。

分析:第五题,会发生死循环,因为  unsigned int i不可能小于0,它永远大于0.

第七题:也会发生死循环,因为unsigned char  i的取值范围是0到255,i永远小于255。

评注:由以上两题可知,任何数据类型都有它的取值范围,如果超出了此范围,就会发生截断,结果还是此范围内的数。并且无符号数没有负数,平常要注意少使用,以减少一些错误呦!

3,浮点型在内存中的存储

其实:浮点型的存储方式在它的名字里就已经有所暗示(个人理解)

3.1一个例子、

 

大家觉得会打印什么呢?(笑)

 这跟我们的正常想法有些许不同doge

但看到了这里,我们至少知道了一件事,整数和浮点数的存储方式肯定是不同

浮点数的存储方式如下:

任意一个二进制浮点数可以表示为:(-1)^S * M * 2^E

(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。

2^E表示指数位。

单精度:

双精度:

 前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。

至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

然后,指数E从内存中取出还可以再分成三种情况:
1.   E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:0   01111110   00000000000000000000000

2.   E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

3.  E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)

讲到这里,想必大家对于例子的疑惑也已经解除了吧,如果实在不行,可以自己调试一下试试呀!正好锻炼了调试的能力!

谢谢大家捏!

  

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值