武汉理工大学第四届ACM校赛(部分补题与写题)

开裂

目录

k-雇佣农民

题目描述

输入描述:

输出描述:

输入

输出

备注:

 小e的苹果树

 不降序列


k-雇佣农民

题目描述

Ly很喜欢星际争霸二这款游戏,但是他现在玩不到了。所以Ly现在只能做一个关于农民的题消磨时光。

开始时Ly没有任何农民,第i天白天Ly最多可以雇佣i个农民,Ly所雇佣的每个农民每天晚上可以生产出1块矿石。Ly想知道他雇佣的农民生产恰好n块矿石最少需要多少天以及雇佣农民的方案。

输入描述:

第一行包含一个非负整数n。

输出描述:

输出两行分别表示最少天数和购买方案。

第一行为一个整数t表示最少天数。

第二行包含用空格隔开的t个整数,第i个整数表示第i天白天雇佣农民的数量。如果有多种方案,输出在越早的时间雇佣农民尽量多的方案。

如果无解则直接只输出一个-1即可。

示例1

输入

5

输出

3
1 1 0

备注:

n<=10^15

思路:

不难发现,增长程度是1,3,6,10......因此,不妨假设每天都雇佣满,那么总贡献就会一直按照前面的累加,这样其实就能得出一共要雇佣几天出来。当雇佣天数出来之后,我们只需要去拼凑每天的雇佣人数就能得出答案,第i天的雇佣贡献是 (总天数-第i天 +1)* 当天雇佣人数;



#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<stack>
#include<string>
#include<algorithm>
#include<unordered_map>
#include<map>
#include<cstring>
#include <unordered_set>
//#include<priority_queue>
#include<queue>
#include<set>
#include<stdlib.h>
#define dbug cout<<"hear!"<<endl;
#define rep(a,b,c) for(ll a=b;a<=c;a++)
#define per(a,b,c) for(ll a=b;a>=c;a--)
#define no cout<<"NO"<<endl;
#define yes cout<<"YES"<<endl;
#define endl "\n"
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//priority_queue<int,vector<int>,greater<int> >q;
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<ll, ll> PII;
typedef pair<long double,long double> PDD;

 ll  INF = 0x3f3f3f3f;
//const ll LINF=LLONG_MAX;
// int get_len(int x1,int y1,int x2,int y2)
// {
//   return (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1);
// }
const ll N = 2e6+ 10;
const ll mod =998244353;
ll t,n,m,x,y,ca;
 ll arr[N],brr[N],crr[N];
//  int h[N],ne[N],e[N],w[N],idx;



void fatchuan()
{	
	cin >> n;
	ll day = 0;
	ll ant = 0;
	ll val = 1;
	ll v = 1;
	while(ant <= n)
	{
		day ++;
		ant += val;
		v ++;
		val += v;
	}
	cout << day <<endl;
	rep(i,1,day)
	{
		cout << min( i, n / (day - i +1))<<' ';
		n -= (day - i + 1) * min( i, n / (day - i +1));
	}
}




int main()
{
    IOS;
    t=1;
    //scanf("%d",&t);
    //cin>>t;
    ca=1;
    while(t--)
    {
      fatchuan(); 
      ca++;
    }    
    return 0;
}

                                                                                                                                                                                                         

 小e的苹果树

 思路:

        通过优先队列来进行动态选择是否摘苹果

#include<bits/stdc++.h>
#define ll long long
#define lowbit(x) (x&(-x))
#define rep(x,a,b) for(int x=a;x<=b;x++)
#define pre(x,a,b) for(int x=a;x>=b;x--)
#define ac puts("Yes")
#define wa puts("No")
#define endl "\n"
#define pb push_back
#define pii pair<ll,ll>
#define de cout<<1;
#define mem(a,x) memset(a,x,sizeof a)
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
using namespace std;
const int mod1=998244353;
const int mod2=1e9+7;
const int N=3e5 + 10 + 60;
ll n, m, ans;
int number;
ll x[N];
void solve()
{
	cin >> n >> m;
    vector<int>p[n + 1];
    map<int, int>mp;
    rep(i, 1, n)
    {
        cin >> x[i];
        mp[x[i]] = i;//并不是按照顺序输入,因此,进行了类似离散处理
        ll num;
        cin >> num;
        rep(j, 0, num - 1)
        {
            ll y;
            cin >> y;
            p[i].push_back(y);
        }
        sort(p[i].begin(), p[i].end());//苹果高度也不是有序输入,输入之后进行排序
    }
    ll ans = 0;
    priority_queue<int>q;
    ll res = 0;
    ll last = 0;//当前位置
    for(auto i : mp)
    {
        ll x = i.first, y = i.second;// x 苹果树的位置 ,y 从0开始是第几个苹果树
        m -= (x - last);//cout<<m;
        last = x;
        while(m < 0 && q.size())//如果此时时间已经用完了,那就把时间还回去,这个苹果不摘了
        {
            m += q.top();
            q.pop();
            ans -- ;
            res = max(res, ans);
        }
        if(p[y].size())//判断是否存在,否则会re
        rep(j, 0, p[y].size() - 1)
        {
            
            if(m >= p[y][j]) m -= p[y][j], q.push(p[y][j]), ans ++, res = max(res, ans);
            else
            {
                if(q.size() > 0)
                if(q.top() > p[y][j]) m += q.top(), m -= p[y][j], q.pop(),q.push(p[y][j]);
            }
            res = max(res, ans);
        }
    }
    cout << res;
}
int main()
{
	IOS;
    int t;
	//cin >> t;
	t = 1;
	while(t -- )
	{
		number++;
		solve();
	}
	return 0;
}

                                                                                                                                                                                                        

 不降序列

思路:

 对于任意一个数,如果要修改使得权值尽可能的大,即要将它变为。这种操作下同删除这个数字的结果是一样的,因此我们只需要进行删除操作即可。利用即可,其中i表示了当前数的位置,j表示了当前总共的操作数。对于每次操作,我们删除当前位置之前的一个数。则状态转移方程为其中len为此时进行的操作数(如果len = 2 则删除前面两个数)
 



#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<stack>
#include<string>
#include<algorithm>
#include<unordered_map>
#include<map>
#include<cstring>
#include <unordered_set>
//#include<priority_queue>
#include<queue>
#include<set>
#include<stdlib.h>
#define dbug cout<<"hear!"<<endl;
#define rep(a,b,c) for(ll a=b;a<=c;a++)
#define per(a,b,c) for(ll a=b;a>=c;a--)
#define no cout<<"NO"<<endl;
#define yes cout<<"YES"<<endl;
#define endl "\n"
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//priority_queue<int,vector<int>,greater<int> >q;
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<ll, ll> PII;
typedef pair<long double,long double> PDD;

 ll  INF = 0x3f3f3f3f;
//const ll LINF=LLONG_MAX;
// int get_len(int x1,int y1,int x2,int y2)
// {
//   return (x2-x1)*(x2-x1) + (y2-y1)*(y2-y1);
// }
const ll N = 2e6+ 10;
const ll mod =998244353;
ll t,n,m,x,y,ca;
 ll arr[N],brr[N],crr[N];
//  int h[N],ne[N],e[N],w[N],idx;

ll dp[600][600];
void fatchuan()
{	
	ll k;
	cin >> n >> k;
	rep(i,1,n)
	{
		cin >> arr[i];
	}
	memset(dp,-1,sizeof(dp));
	dp[1][0] = 0;
	rep(i,2,n)
	{
		rep(j,0,k)
		{
			if(i - j < 2)continue;
			rep(k,0,j)
			{
				ll len = j - k;
				if(i - len >= 2)
				{
					dp[i][j] = max(dp[i][j] , dp[i - len - 1][j - len] + (ll)(arr[i] - arr[i - len - 1]) * (arr[i] - arr[i - len - 1]));
				}
			}
		}
	}
	ll ans =0;
	rep(i,0,k)
	{
		ans = max( ans, dp[n][k]);
	}
	cout<<ans;
}




int main()
{
    IOS;
    t=1;
    //scanf("%d",&t);
    //cin>>t;
    ca=1;
    while(t--)
    {
      fatchuan(); 
      ca++;
    }    
    return 0;
}

                                                                                                                                                                                                        

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值