个人主页:仍有未知等待探索-CSDN博客
一、题目
农夫John建造了一个新的长谷仓,其中有N个(2 <= N <= 100,000)摊位。档位沿直线位于位置x1,...,xN(0 <= xi <= 1,000,000,000)。
他的C(2 <= C <= N)头母牛不喜欢这种谷仓布局,一旦放到摊子里就会变得互相攻击。为了防止母牛互相伤害,John希望将母牛分配给摊位,以使它们之间的最小距离尽可能大。最大最小距离是多少?
输入格式:
第1行:两个以空格分隔的整数:N和C
第2..N + 1行:第i + 1行包含整数停滞位置xi
输出格式:
一个整数:最大最小距离
输入样例:
5 3 1 2 8 4 9
输出样例:
3
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
栈限制
8192 KB
二、理解
通过题目看,这就是一个二分+贪心的题目。
题意是给N个摊位(摊位都在一条直线上,位置为xi),c头牛,让你求任意两头牛之间的最小距离的最大值。
任意两头牛的距离最小,我们就只用看相邻两头牛间的距离就行了,找到最小值的最大值。将摊位的位置进行排序。
通过二分来找相邻两头牛间的距离,然后每二分一次,就判断一次摊位是否能放得下c头牛。
通过分析,第一头牛一定放在第一个摊位上,如果放在别处就不能保证最大。
三、代码
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N = 100005;
ll a[N];
int n, c;
bool check(ll x)
{
// x相当于是间隔数
int t = c - 1;// 默认第一头牛放在第一个栅栏处
int f = a[0];// 最后放入牛的位置
for (int i = 1; i < n; i ++ )
{
if (t > 0 && a[i] - f >= x)
{
f = a[i];// 如果后面还能放牛,更新,将牛的数量-1
t --;
}
}
if (t == 0) return true;// 如果放满了,返回真
else return false;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n >> c;
for (int i = 0; i < n; i ++ ) cin >> a[i];
sort(a, a + n);
// 这就是一个简单的二分
ll i = -1, j = 1e9 + 1;// 两头牛之间的间隔数一定是小于等于1e9的
while (i + 1 != j)
{
ll mid = i + j >> 1;
if (check(mid)) i = mid;
else j = mid;
}
cout << i;
return 0;
}