C/C++ h0138. 疯牛

个人主页:仍有未知等待探索-CSDN博客

专题分栏:算法_仍有未知等待探索的博客-CSDN博客

一、题目

农夫John建造了一个新的长谷仓,其中有N个(2 <= N <= 100,000)摊位。档位沿直线位于位置x1,...,xN(0 <= xi <= 1,000,000,000)。

他的C(2 <= C <= N)头母牛不喜欢这种谷仓布局,一旦放到摊子里就会变得互相攻击。为了防止母牛互相伤害,John希望将母牛分配给摊位,以使它们之间的最小距离尽可能大。最大最小距离是多少?

输入格式:

第1行:两个以空格分隔的整数:N和C

第2..N + 1行:第i + 1行包含整数停滞位置xi

输出格式:

一个整数:最大最小距离

输入样例:

5 3
1
2
8
4
9

输出样例:

3

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

栈限制

8192 KB

二、理解

通过题目看,这就是一个二分+贪心的题目。

题意是给N个摊位(摊位都在一条直线上,位置为xi),c头牛,让你求任意两头牛之间的最小距离的最大值。

任意两头牛的距离最小,我们就只用看相邻两头牛间的距离就行了,找到最小值的最大值。将摊位的位置进行排序。

通过二分来找相邻两头牛间的距离,然后每二分一次,就判断一次摊位是否能放得下c头牛。

通过分析,第一头牛一定放在第一个摊位上,如果放在别处就不能保证最大。

三、代码

#include <iostream>
#include <algorithm>
using namespace std;

typedef long long ll;
const int N = 100005;

ll a[N];
int n, c;

bool check(ll x)
{
    // x相当于是间隔数
    int t = c - 1;// 默认第一头牛放在第一个栅栏处
    int f = a[0];// 最后放入牛的位置
    for (int i = 1; i < n; i ++ )
    {
        if (t > 0 && a[i] - f >= x)
        {
            f = a[i];// 如果后面还能放牛,更新,将牛的数量-1
            t --;
        }
    }
    if (t == 0) return true;// 如果放满了,返回真
    else return false;
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);

    cin >> n >> c;
    for (int i = 0; i < n; i ++ ) cin >> a[i];

    sort(a, a + n);
    // 这就是一个简单的二分
    ll i = -1, j = 1e9 + 1;// 两头牛之间的间隔数一定是小于等于1e9的
    while (i + 1 != j)
    {
        ll mid = i + j >> 1;
        if (check(mid)) i = mid;
        else j = mid;
    }

    cout << i;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

仍有未知等待探索

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值