自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(44)
  • 收藏
  • 关注

原创 2026.2.13 & 2.14 学习笔记

递归求深度的写法,我们在110.平衡二叉树 (opens new window)中详细的分析了深度应该怎么求,高度应该怎么求。递归中其实隐藏了回溯,在257. 二叉树的所有路径 (opens new window)中讲解了究竟哪里使用了回溯,哪里隐藏了回溯。层次遍历,在二叉树:层序遍历登场!深度讲解了二叉树层次遍历。所以本题涉及到的点,我们之前都讲解过,这些知识点需要同学们灵活运用,这样就举一反三了。

2026-02-15 23:13:31 550

原创 2026.2.10 & 2.11学习笔记

针对二叉树的问题,解题之前一定要想清楚究竟是前中后序遍历,还是层序遍历。二叉树解题的大忌就是自己稀里糊涂的过了(因为这道题相对简单),但是也不知道自己是怎么遍历的。这也是造成了二叉树的题目“一看就会,一写就废”的原因。针对翻转二叉树,我给出了一种递归,三种迭代(两种模拟深度优先遍历,一种层序遍历)的写法,都是之前我们讲过的写法,融汇贯通一下而已。大家一定也有自己的解法,但一定要成方法论,这样才能通用,才能举一反三!

2026-02-11 23:11:40 628

原创 20262.8&2.9学习笔记

刚刚我们说过了二叉树有两种存储方式顺序存储,和链式存储,顺序存储就是用数组来存,这个定义没啥可说的,我们来看看链式存储的二叉树节点的定义方式。int val;大家会发现二叉树的定义 和链表是差不多的,相对于链表 ,二叉树的节点里多了一个指针, 有两个指针,指向左右孩子。这里要提醒大家要注意二叉树节点定义的书写方式。在现场面试的时候 面试官可能要求手写代码,所以数据结构的定义以及简单逻辑的代码一定要锻炼白纸写出来。

2026-02-09 22:41:05 602

原创 2026.2.5 & 2.6学习笔记

在栈与队列系列中,我们强调栈与队列的基础,也是很多同学容易忽视的点。使用抽象程度越高的语言,越容易忽视其底层实现,而C++相对来说是比较接近底层的语言。我们用栈实现队列,用队列实现栈来掌握的栈与队列的基本操作。接着,通过括号匹配问题、字符串去重问题、逆波兰表达式问题来系统讲解了栈在系统中的应用,以及使用技巧。通过求滑动窗口最大值,以及前K个高频元素介绍了两种队列:单调队列和优先级队列,这是特殊场景解决问题的利器,是一定要掌握的。

2026-02-06 23:38:03 639

原创 2026.2.4学习笔记

C++优化代码。

2026-02-04 23:53:46 601

原创 2026.2.2 & 2.3学习笔记

关于npos它是的静态无符号常量,调用方式固定为;它是字符串查找函数的 “未找到标志”,也是表示「到字符串末尾」的实用参数;永远只和find()等的返回值直接比较,不要和-1int类型比较,避免坑。不过这种解法还有一个问题,就是 我们最终还是要判断 一个字符串(s + s)是否出现过 s 的过程,大家可能直接用contains,find 之类的库函数, 却忽略了实现这些函数的时间复杂度(暴力解法是m * n,一般库函数实现为 O(m + n))。如果我们做过。

2026-02-03 23:11:59 715

原创 2026.1.31 & 2.1学习笔记

今日学习的是字符串 所做的题分别为 344.反转字符串 541. 反转字符串II 151.翻转字符串里的单词。

2026-02-01 23:32:59 649

原创 2026.1.29学习笔记补充

对于哈希表的知识相信很多同学都知道,但是没有成体系。本篇我们从哈希表的理论基础到数组、set和map的经典应用,把哈希表的整个全貌完整的呈现给大家。同时也强调虽然map是万能的,详细介绍了什么时候用数组,什么时候用set。相信通过这个总结篇,大家可以对哈希表有一个全面的了解。

2026-01-29 13:43:20 975

原创 2026.1.28 & 1.29学习笔记

接下来如何移动left 和right呢, 如果nums[i] + nums[left] + nums[right] > 0 就说明 此时三数之和大了,因为数组是排序后了,所以right下标就应该向左移动,这样才能让三数之和小一些。这么写就是当前使用 nums[i],我们判断前一位是不是一样的元素,在看 {-1, -1 ,2} 这组数据,当遍历到 第一个 -1 的时候,只要前一位没有-1,那么 {-1, -1 ,2} 这组数据一样可以收录到 结果集里。说到去重,其实主要考虑三个数的去重。

2026-01-29 13:22:56 967

原创 2026.1.27学习笔记

总结一下,当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法。但是哈希法也是牺牲了空间换取了时间,因为我们要使用额外的数组,set或者是map来存放数据,才能实现快速的查找。如果在做面试题目的时候遇到需要判断一个元素是否出现过的场景也应该第一时间想到哈希法!为什么会想到用哈希表哈希表为什么用map本题map是用来存什么的map中的key和value用来存什么的把这四点想清楚了,本题才算是理解透彻了。

2026-01-27 23:25:32 812

原创 20261.23 &1.24学习笔记

这个图是代码随想录知识星球 (opens new window)海螺人 (opens new window),所画,总结的非常好,分享给大家。考察链表的操作其实就是考察指针的操作,是面试中的常见类型。链表篇中开头介绍链表理论知识 (opens new window)关于链表,你该了解这些!虚拟头结点的技巧(opens new window)链表的增删改查(opens new window)反转一个链表(opens new window)删除倒数第N个节点(opens new window)

2026-01-25 00:00:15 679

原创 2026.1.22学习笔记

接下来说一说链表的定义。链表节点的定义,很多同学在面试的时候都写不好。这是因为平时在刷leetcode的时候,链表的节点都默认定义好了,直接用就行了,所以同学们都没有注意到链表的节点是如何定义的。而在面试的时候,一旦要自己手写链表,就写的错漏百出。// 单链表int val;// 节点上存储的元素// 指向下一个节点的指针ListNode(int x) : val(x), next(NULL) {} // 节点的构造函数。

2026-01-23 00:17:54 762

原创 2026.1.21学习笔记

由于c++篇幅过长,所以先将算法题放在前面,c++学习笔记放到后面。

2026-01-22 00:04:39 781

原创 2026.1.20学习笔记

为什么会想到用哈希表哈希表为什么用map本题map是用来存什么的map中的key和value用来存什么的把这四点想清楚了,本题才算是理解透彻了。

2026-01-20 23:50:53 1208

原创 2026.1.19学习笔记

今日学习了数组 函数 指针三个基础板块。

2026-01-20 00:04:58 640

原创 2026.1.18学习笔记

生成一个随机数,让用户猜,并告知大了还是小了,注意要添加随机数种子,防止每次随机数都一样,作用利用当前系统时间生成随机数。(5):副本难度(switch-case语句)我写的代码如下:参考的是王道的二叉查找法。学习了数据类型 运算符 程序流程结构。个元素有序的(升序)整型数组。注意个位 十位 百位的表示方法。(4):99乘法表(嵌套语句)存在返回下标,否则返回。注意if语句里判断语句。

2026-01-18 22:39:21 334

原创 PyTorch学习笔记之二十一个项目玩转pytorch(三):从零构建图像分类模型

本文 学习笔记均来自于上述同款书名通过经典项目入门 PyTorch,通过前沿项目提升 PyTorch,基于PyTorch玩转深度学习,本书适合人工智能、机器学习、深度学习方面的人员阅读,也适合其他 IT 方面从业者,另外,还可以作为相关专业的教材。有需要的宝子们可以去拼多多购买,有便宜的PyTorch 是基于 Torch 库的开源机器学习库,它主要由 Meta(原 Facebook)的人工智能研究实验室开发,在自然语言处理和计算机视觉领域都具有广泛的应用。

2023-08-23 11:56:48 613

原创 pytorh学习笔记:根据图示写相应神经网络以及对相应的debug进行修改

该博客说是因为我们forward函数出了错误,再细看网络发现在NetWork中,forward函数中的self没有像正确定义后出现紫色字样,这是因为我们把forward函数定义在了def __init__中,正确 做法应该是俩个def齐平。这是我重新写的一个网络结构,但是出现了相当多的报错,有小伙伴能在不看的情况下把这些报错都改过来吗,有的话评论区扣1,好了回归正题。各位小伙伴大家好,很高兴又能和你见面,,在这篇博客中我将记录我再暑期学习中出现的debug以及修改debug的过程。

2023-08-19 22:34:58 358

原创 PyTorch学习笔记之二十一个项目玩转pytorch(二):ImageNet图像识别模型与CIFAR-10

CIFAR-10数据集共有60000张32*32的RGB彩色图片, 分为10个类别,每个类别有6000张图片。其中训练集图片为50 000张,测试集有10000张图片。训练集和测试集的生成方法是,分别从每个类别中随机挑选1 000张图片加入测试集,其余图片便加入训练集。与MNIST手写字符数据集比较来看,CIFAR-10数据集是彩色图片,图片内容是真实世界的物体,噪声更大,物体的比例也不一样,所以在识别上比MNIST困难很多。特点总结:(1)CIFAR-10是RGB的图片。

2023-08-19 21:15:10 1698 1

原创 PyTorch学习笔记之二十一个项目玩转pytorch(一):数字识别

原始的MNIST数据共包含4个文件文件名大小用途≈9.45Mb训练图像数据≈0.03Mb训练图像的标签≈1.57Mb测试图像数据≈4.4Kb测试图像的标签我们可以通过自行下载数据集,然后自行处理,也可以使用打包好的在pytorch中,torch.nn是专门为神经网络设计的模块化接口,nn库可以用来定义和运行神经网络,nn.Module是nn库中十分重要的类,包含网络各层的定义及forward函数.

2023-08-19 15:43:30 1974 4

原创 PyTorch教程数字识别中为什么是 self.fc1 = nn.Linear(16*5*5, 120)一事

所以任何以32*32为起点的都是在讨论batch_size,而别人给的代码中给出了x.view,将batch_size提到第一维,其他维数相乘,这里算作Linear层的输入,那为什么其他维数相乘是16*5*5呢?为什么全部连接第一层输入是16*5*5,在csdn中查了一番,感觉其他博主说的都没有解决我心中的疑惑,于是问了下我朋友,发现我们掉进了一个陷阱中。虽然他给出了input是32*32,但是人家书中给出的完整代码是。首先,在书中给出了网络结构是。

2023-08-19 14:56:24 1020 1

原创 暑期作业笔记:代码以及debug修复

该博客说是因为我们forward函数出了错误,再细看网络发现在NetWork中,forward函数中的self没有像正确定义后出现紫色字样,这是因为我们把forward函数定义在了def __init__中,正确 做法应该是俩个def齐平。这是我重新写的一个网络结构,但是出现了相当多的报错,有小伙伴能在不看的情况下把这些报错都改过来吗,有的话评论区扣1,好了回归正题。各位小伙伴大家好,很高兴又能和你见面,,在这篇博客中我将记录我再暑期学习中出现的debug以及修改debug的过程。

2023-08-18 21:53:21 190

原创 PyTorch学习笔记:Vision Transformer(ViT)模型原理及PyTorch逐行实现

虽然变压器架构已成为自然的事实标准语言处理任务,其对计算机视觉的应用仍然有限。在 视觉,注意力要么与卷积网络结合使用,要么用于替换卷积网络的某些组件,同时保持其整体结构到位。我们表明,这种对CNN的依赖是不必要的直接应用于图像补丁序列的纯转换器可以执行在图像分类任务上做得很好。

2023-08-18 15:22:37 1464

原创 PyTorch学习笔记:GRU的原理及其手写复现

首先再开始之前,我想问一下在座的各位实现过GRU的源码吗,不会的扣1,会的小伙伴们扣脚指头,嘿嘿,开玩笑的,我也不知道,那么接下来我们一起学习如何写吧!其次 ,对于上一篇LSTM,其实还存在另外一种四个门都存在c(t-1),有兴趣的小伙伴可以 自行修改代码以实现或者可以查看视频讲解需要注意的,例如LSTM存在prej_size,存在俩个初始状态(在原公式中找下标有t-1的)

2023-08-16 16:23:13 1016

原创 补充LeNet,resnet,mobilenet的出处(val)

在之前的博客中只给了原作者github的链接放出来,但是可能有小伙伴不知道在哪里,所以我在这将数据集直接放出来,便于各位小伙伴进行代码的理解。

2023-08-14 23:00:27 196

原创 补充LeNet,resnet,mobilenet的出处(train)

在之前的博客中只给了原作者github的链接放出来,但是可能有小伙伴不知道在哪里,所以我在这将数据集直接放出来,便于各位小伙伴进行代码的理解。

2023-08-14 22:49:49 197

原创 补充LeNet,resnet,mobilenet的出处

在之前的博客中只给了原作者github的链接放出来,但是可能有小伙伴不知道在哪里,所以我在这将数据集直接放出来,便于各位小伙伴进行代码的理解。其中(2)点击链接下载花分类数据集(本文已上传以及分好后的数据集)

2023-08-14 22:44:05 363

原创 PyTorch学习笔记:LSTM和LSTMP的原理及其手写复现

首先再开始之前,我想问一下在座的各位实现过LSTM吗,不会的扣1,会的小伙伴们扣脚指头,嘿嘿,开玩笑的,我也不知道,那么接下来我们一起学习如何写吧!30、PyTorch LSTM和LSTMP的原理及其手写复现_哔哩哔哩_bilibili循环神经网络(超详细|附代码训练)_后来后来啊的博客-CSDN博客长短时记忆网络(LSTM)(超详细 |附训练代码)_后来后来啊的博客-CSDN博客递归神经网络(超详细|附训练代码)_后来后来啊的博客-CSDN博客。

2023-08-14 21:30:44 1864 2

原创 Pytorch学习笔记:RNN的原理及其手写复现

应用多层 Elman RNN 与tanh或ReLU非线性到 输入序列。对于输入序列中的每个元素,每个层计算以下内容 功能(计算公式):即ht是t时刻的隐藏状态,xt是t时刻的输入状态,h(t-1)是t-1时刻的隐藏状态,h0则表示初始时刻的隐藏状态.并提供了俩种激活函数tanh和ReLU,一般状态下用的tanh激活函数首先需要对RNN进行 实例化,提供以下参数。

2023-08-12 23:42:29 1423

原创 Pytorch的Dataset和DataLoader详细使用教程

理想情况下,我们需要我们的数据集代码 与我们的模型训练代码分离,以获得更好的可读性和模块化。根据索引,它识别图像在磁盘上的位置,将其转换为张量,使用 检索 中 CSV 数据的相应标签,调用其上的转换函数(如果适用),并返回 元组中的张量图像和相应的标签。因为我们指定了 ,在我们遍历所有批次后,数据将被洗牌(用于更细粒度的控制 数据加载顺序,看看。首先再开始之前,我想问一下在座的各位知道怎么写一个Dataset吗,不会的扣1,会的小伙伴们扣脚指头,嘿嘿,开玩笑的,我也不知道,那么接下来我们一起学习如何写吧!

2023-08-11 11:18:23 1101 2

原创 MobileNetv1,v2网络详解并使用pytorch搭建MobileNetV2及基于迁移学习训练(超详细|附训练代码)

主要是为了在移动端float16的低精度的时候,也能有很好的数值分辨率,如果对ReLu的输出值不加限制,那么输出范围就是0到正无穷,而低精度的float16无法精确描述其数值,带来精度损失。ReLU和ReLU6图表对比:残差模块(1) 整个过程为 “压缩 - 卷积 - 扩张”,呈沙漏型;(2) 卷积操作为:卷积降维 (1×1) - 标准卷积提取特征 (3×3) - 卷积升维 (1×1);(3) 统一使用 ReLU 激活函数;倒残差模块。

2023-08-10 16:35:15 5735 2

原创 使用pytorch搭建ResNet并基于迁移学习训练(超详细 |附训练代码)

最近在完成学校暑假任务时候,推荐的b站视频中发现了一个非常好的 计算机视觉 + pytorch实战 的教程,相见恨晚,能让初学者少走很多弯路。因此决定按着up给的教程路线:图像分类→目标检测→…一步步学习用 pytorch 实现深度学习在 cv 上的应用,并做笔记整理和总结。up主教程给出了pytorch和tensorflow两个版本的实现,我暂时只记录pytorch版本的笔记。

2023-08-09 16:38:45 11115 3

原创 VGG网络详解及感受野的计算(超详细 |附训练代码)

最近在完成学校暑假任务时候,推荐的b站视频中发现了一个非常好的 计算机视觉 + pytorch实战 的教程,相见恨晚,能让初学者少走很多弯路。因此决定按着up给的教程路线:图像分类→目标检测→…一步步学习用 pytorch 实现深度学习在 cv 上的应用,并做笔记整理和总结。up主教程给出了pytorch和tensorflow两个版本的实现,我暂时只记录pytorch版本的笔记。

2023-08-08 14:40:56 1191

原创 pytoch学习: AlexNet网络结构详解与花分类数据集下载(官方demo实现分类器LeNet)(超详细 |附训练代码)

最近在b站发现了一个非常好的 计算机视觉 + pytorch实战 的教程,相见恨晚,能让初学者少走很多弯路。因此决定按着up给的教程路线:图像分类→目标检测→…一步步学习用 pytorch 实现深度学习在 cv 上的应用,并做笔记整理和总结。up主教程给出了pytorch和tensorflow两个版本的实现,我暂时只记录pytorch版本的笔记。

2023-08-07 17:01:05 980 1

原创 PyTorch的state_dict、parameters、modules、nn.Sequential及ModuleList源码学习(学习笔记)

以下代码是我的学习笔记,如有出错或者不懂,请指正,同时推荐可以观看以上视频来解惑↑↑↑。

2023-08-06 16:31:20 233

原创 深入剖析pytorch nn.Module源码

视频推荐:​PyTorch的nn.Module是一个基类,用于定义神经网络模型。它提供了一些方法和属性,使得我们可以方便地定义、训练和使用神经网络模型。我们定义的模型也该继承这个类(class)如上,nn.conv2d将二维子module加入到父module中去。

2023-08-04 17:01:44 492 1

原创 递归神经网络(超详细|附训练代码)

另外两个词『Germany』和『France』因为表示的都是地点,它们的向量与上面两句话的向量的距离,就比另外两个表示时间的词『Monday』和『Tuesday』的向量的距离近得多。比如,在左边的这棵树中,向量p2是短语『外语学院的学生』的表示,而向量p1是短语『外语学院的』的表示。然后,我们把产生的父节点的向量和其他子节点的向量再次作为网络的输入,再次产生它们的父节点。的输入是两个子节点(也可以是多个),输出就是将这两个子节点编码后产生的父节点,父节点的维度和每个子节点是相同的。对于这种复杂的结构,

2023-08-03 16:13:00 8483

原创 长短时记忆网络(LSTM)(超详细 |附训练代码)

那么,从这个时刻开始再往之前走,得到的梯度(几乎为零)就不会对最终的梯度值有任何贡献,这就相当于无论t-3时刻之前的网络状态h是什么,在训练中都不会对权重数组W的更新产生影响,也就是网络事实上已经忽略了t-3时刻之前的状态。由于遗忘门的控制,它可以保存很久很久之前的信息,由于输入门的控制,它又可以避免当前无关紧要的内容进入记忆。LSTM的前向计算都这么复杂,那么,可想而知,它的训练算法一定是非常非常复杂的。从上面的代码我们可以看到,门的计算都是相同的算法,而门和的计算仅仅是激活函数不同。

2023-08-02 23:24:49 139383 5

原创 循环神经网络(超详细|附代码训练)

如果用2-Gram进行建模,那么电脑在预测的时候,只会看到前面的『了』,然后,电脑会在语料库中,搜索『了』后面最可能的一个词。从上图我们可以看到,softmax layer的输入是一个向量,输出也是一个向量,两个向量的维度是一样的(在这个例子里面是4)。语言模型要求的输出是下一个最可能的词,我们可以让循环神经网络计算计算词典中每个词是下一个词的概率,这样,概率最大的词就是下一个最可能的词。例如,我们对标签『我』进行向量化,得到的向量中,只有第2019个元素的值是1,其他位置的元素的值都是0。

2023-07-31 15:45:01 9202 4

原创 卷积神经网络(超详细|配代码讲解)

展示的神经网络,我们看到输入层的宽度和高度对应于输入图像的宽度和高度,而它的深度为1。说卷积神经网络是最重要的一种神经网络也不为过,它在最近几年大放异彩,几乎所有图像、语音识别领域的重要突破都是卷积神经网络取得的,比如谷歌的GoogleNet、微软的ResNet等,打败李世石的AlphaGo也用到了这种网络。第一个全连接层的每个神经元,和上一层5个Feature Map中的每个神经元相连,第二个全连接层(也就是输出层)的每个神经元,则和第一个全连接层的每个神经元相连,这样得到了整个网络的输出。

2023-07-30 20:31:42 12973 4

Transformer思维导图

Transformer思维导图

2023-08-16

将数据集分成train和val数据集

补充LeNet,resnet,mobilenet代码博客数据集的出处

2023-08-14

将数据集分成train和val数据集

补充LeNet,resnet,mobilenet代码博客数据集的出处

2023-08-14

将数据集分成train和val数据集

补充LeNet,resnet,mobilenet代码博客数据集的出处

2023-08-14

补充LeNet,resnet,mobilenet代码博客数据集的出处

补充LeNet,resnet,mobilenet代码博客数据集的出处

2023-08-14

Pytorch学习笔记:RNN的原理及其手写复现 RNN网络思维导图

RNN网络思维导图

2023-08-12

深度学习 pytorch从图像分类→神经网络学习深入→目标检测→语义分割,简易版本学习推荐

图像分类是深度学习中最常见的任务之一,它的目标是将输入的图像分为不同的类别。PyTorch提供了许多预训练的模型,如AlexNet、VGG、ResNet等,可以直接用于图像分类任务。此外,PyTorch还提供了丰富的数据处理和模型训练工具,使得图像分类任务的实现更加便捷。 神经网络学习深入是深度学习中的一个重要环节,它涉及到神经网络的结构设计、参数调整等方面。PyTorch提供了灵活的网络构建接口,可以根据具体任务需求自定义网络结构。同时,PyTorch还提供了自动求导功能,可以自动计算网络参数的梯度,从而实现网络的优化和训练。 目标检测是深度学习中的另一个重要任务,它的目标是在图像中定位和识别多个目标。PyTorch提供了一些流行的目标检测算法的实现,如Faster R-CNN、YOLO等。这些算法可以用于目标检测任务,并且可以通过迁移学习将预训练的模型应用于新的数据集。 语义分割是深度学习中的一种高级任务,它的目标是将图像中的每个像素分配到不同的语义类别。PyTorch提供了一些语义分割模型的实现,如FCN、DeepLab等。这些模型可以用于语义分割任务,并且可以通过训练和微调

2023-08-07

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除