AtCoder Beginner Contest 352 G - Socks 3

题目链接

思路:

        设pi为恰好第i次取到一双袜子的概率,设qi为大于等于i次抽到一双袜子的概率,又有qi等价于前i-1次不抽到的概率。有引理:\sum_{1}^{n}p[i]*i=\sum_{1}^{n}q[i]    。

引理证明:

用个数的方法证明。对于qi=\sum_{i}^{n}p[i]  ,即对于每个qi都会对区间[i,n]pi提供一个数量,也就是说对于[0,i-1]qi可以产生ipi,和pi*i是等价的,对于任意一个pi都是提供了i个,所以两个式子是相等的。

        我们将每只袜子都认为不一样(同一颜色的袜子也不一样),那么总的排列数就是

n的阶乘。接下来我们考虑qi怎么求。qi即是前n-1次都是不同袜子的概率,我们先求qi的分子,

即前i-1次抽到不同颜色袜子的排列数。设k=i-1,sum为所有袜子数,那么就是从n种颜色里抽出k种颜色的排列再乘上(sum-k)的阶乘,k!*\binom{n}{k}

        容易发现从n种颜色取k种颜色就是生成函数1+a[i]*X连积   \prod_{1}^{n}1+a[i]*x  的x^{k}的系数。

n项多项式的连成若用朴素算法则是n^{2}log的复杂度,是不行的。我们考虑分治,T(n)=

2*T(n/2)+n*log n  最终时间复杂度是 nlog^{2}

        对于分治,就用线段树的模板,参数取p,l,r表示所在位置,当前位置区间的左端点和

右端点。我们可以设*c[N](注意实际上是二维)来存每次NTT的结果,由于线段树每次区间长度都是按2的倍数增加

或减少的,而两多项式相乘幂的增长是相加的,所以每次回溯的时候动态开两子树多项式长度

和的数组来存乘积结果就行。

        然后求分母,分母就是前k项的全排列k!

        答案即\sum_{1}^{n}q[i] 不是到n+1,因为n+1次必有一双袜子。

代码:

#include<bits/stdc++.h>
using namespace std;
const int N=3e6+10;
const int inf=0x3f3f3f3f;
typedef long long ll;
typedef pair<int,int> pii;
typedef unsigned long long ull;
//const ll P=2281701377;
const ll P=998244353;

ll g=3,gi,n,m,top;
ll *c[N],fac[N],d[N];
ll a[N],b[N];
ll R[N];
ll qpow(ll a,ll b){
	ll res=1;
	while(b){
		if(b&1)	res=(res*a)%P;
		b>>=1;
		a=(a*a)%P;
	}
	return res%P;
}
void NTT(ll a[],int n,int op){
	if(n==1) return;
	ll a1[n/2],a2[n/2];
	for(int i=0;i<n/2;i++)
		a1[i]=a[i*2],a2[i]=a[i*2+1];
	NTT(a1,n/2,op),NTT(a2,n/2,op);
	ll g1=qpow(op==1?g:gi,(P-1)/n);
	ll gk=1;
	for(int i=0;i<n/2;i++){
		a[i]=(a1[i]+a2[i]*gk)%P;
		a[i+n/2]=(a1[i]-a2[i]*gk%P+P)%P;
		gk=gk*g1%P; 
	}
}
void butt_ntt(ll a[],int n,int op){
	for(int i=0;i<n;i++)
		R[i]=R[i/2]/2+((i&1)?n/2:0);
	for(int i=0;i<n;i++)
		if(i<R[i]) swap(a[i],a[R[i]]);
	for(int i=2;i<=n;i<<=1){
		ll g1=qpow(op==1?g:gi,(P-1)/i);
		for(int j=0;j<n;j+=i){
			ll gk=1;
			for(int k=j;k<j+i/2;k++){
				ll x=a[k],y=gk*a[k+i/2]%P;
				a[k]=(x+y)%P;a[k+i/2]=(x-y+P)%P;
				gk=gk*g1%P;
			}
		}
	}
}
void clear(int n){
	for(int i=0;i<=n;i++)
		a[i]=b[i]=0;
}
ll get_len(int n,int m){
	for(m=n+m,n=1;n<=m;n<<=1);
		return n;
}
void mult(){
	for(int i=0;i<=top;i++)
		a[i]=(a[i]*b[i])%P;
}
void get_ntt(ll a[],ll b[],int n,int m){
	top=get_len(n,m);
	//NTT(a,top,1);NTT(b,top,1);
	butt_ntt(a,top,1);butt_ntt(b,top,1);
	mult();
	//NTT(a,top,-1);
	butt_ntt(a,top,-1);
	ll inv=qpow(top,P-2);
	for(int i=0;i<=top;i++){
		a[i]=(a[i]*inv)%P;
	}
}
void binary(int p,int l,int r){
	c[p]=new ll[r-l+2];
	if(l==r){
		c[p][0]=1,c[p][1]=d[l];
		return;
	}	
	int mid=(l+r)/2;
	binary(p*2,l,mid);binary(p*2+1,mid+1,r);
	top=get_len(r-l+2,1);
	clear(top);
	for(int i=0;i<=mid-l+1;i++)
		a[i]=c[p*2][i];
	for(int i=0;i<=r-mid;i++)
		b[i]=c[p*2+1][i];
	get_ntt(a,b,mid-l+2,r-mid+1);
	for(int i=0;i<=r-l+1;i++){
		c[p][i]=a[i];
	}
}
void solve(){
    gi=qpow(g,P-2);
	cin>>n;
	ll sum=0;
	for(int i=1;i<=n;i++){
		cin>>d[i];
		sum+=d[i];
	}
	fac[0]=1;
	for(int i=0;i<n;i++)
		fac[i+1]=((1ll*fac[i]*(i+1))%P*qpow(sum-i,P-2))%P;
	binary(1,1,n);
	ll ans=0,t=1;
	for(int i=1;i<=n;i++){
		t=((t*qpow(sum+1-i,P-2))%P*i)%P;
		ans=(ans+c[1][i]*t)%P;
	} 
	cout<<ans+1;
}
int main(){
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    int t=1;
   // cin>>t;
    while(t--){
        solve();
    }

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值