树上启发式合并——dsu on tree

参考文章:

树上启发式合并
[dsu on tree]树上启发式合并总结
树上启发式合并の详解

启发式合并

启发式算法是什么呢?

启发式算法是基于人类的经验和直观感觉,对一些算法的优化。

举个例子,最常见的就是并查集的启发式合并了,代码是这样的:

void merge(int x, int y) {
  int xx = find(x), yy = find(y);
  if (size[xx] < size[yy]) swap(xx, yy);
  fa[yy] = xx;
  size[xx] += size[yy];
}

在这里,对于两个大小不一样的集合,我们将小的集合合并到大的集合中,而不是将大的集合合并到小的集合中。

为什么呢?这个集合的大小可以认为是集合的高度(在正常情况下),而我们将集合高度小的并到高度大的显然有助于我们找到父亲。

让高度小的树成为高度较大的树的子树,这个优化可以称为启发式合并算法。

[HNOI2009] 梦幻布丁

P3201 [HNOI2009] 梦幻布丁

题目描述

n n n 个布丁摆成一行,进行 m m m 次操作。每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色。

例如,颜色分别为 1 , 2 , 2 , 1 1,2,2,1 1,2,2,1 的四个布丁一共有 3 3 3 段颜色.

输入格式

第一行是两个整数,分别表示布丁个数 n n n 和操作次数 m m m
第二行有 n n n 个整数,第 i i i 个整数表示第 i i i 个布丁的颜色 a i a_i ai
接下来 m m m 行,每行描述一次操作。每行首先有一个整数 o p op op 表示操作类型:

  • o p = 1 op = 1 op=1,则后有两个整数 x , y x, y x,y,表示将颜色 x x x 的布丁全部变成颜色 y y y
  • o p = 2 op = 2 op=2,则表示一次询问。

输出格式

对于每次询问,输出一行一个整数表示答案。

样例 #1

样例输入 #1

4 3
1 2 2 1
2
1 2 1
2

样例输出 #1

3
1

提示

样例 1 解释

初始时布丁颜色依次为 1 , 2 , 2 , 1 1, 2, 2, 1 1,2,2,1,三段颜色分别为 [ 1 , 1 ] , [ 2 , 3 ] , [ 4 , 4 ] [1, 1], [2, 3], [4, 4] [1,1],[2,3],[4,4]
一次操作后,布丁的颜色变为 1 , 1 , 1 , 1 1, 1, 1, 1 1,1,1,1,只有 [ 1 , 4 ] [1, 4] [1,4] 一段颜色。

数据规模与约定

对于全部的测试点,保证 1 ≤ n , m ≤ 1 0 5 1 \leq n, m \leq 10^5 1n,m105 1 ≤ a i , x , y ≤ 1 0 6 1 \leq a_i ,x, y \leq 10^6 1ai,x,y106

提示

请注意,不保证颜色的编号不大于 n n n,也不保证 x ≠ y x \neq y x=y m m m 不是颜色的编号上限。

思路

在处理颜色布丁集合合并的问题时,我们面临的是一系列颜色布丁集合,每个集合可以看作一个队列。我们需要频繁地合并两个集合,每次合并操作涉及到两个集合 x x x y y y。如果采用暴力合并方法,每次合并的复杂度最坏为 O ( n ) O(n) O(n),其中 n n n 是所有集合元素的总和。
为了优化这一过程,我们引入了启发式合并的概念。启发式合并的核心思想是每次将较小的集合合并到较大的集合中,这样每次合并的复杂度为 O ( ∣ 短的队列 ∣ ) O(|短的队列|) O(短的队列)。虽然单次合并的复杂度看起来没有显著改善,但通过均摊分析,我们可以得到更好的整体性能。我们使用贡献法来分析均摊复杂度。假设两个集合分别为 A A A B B B,且 ∣ A ∣ < ∣ B ∣ |A| < |B| A<B。我们将 A A A 暴力加入到 B B B 中,这样 A A A 中的元素所在的集合大小变成 ∣ A ∣ + ∣ B ∣ |A| + |B| A+B,即至少变成了原来的两倍。因此,每个元素至多被加入 log ⁡ n \log n logn 次,总的复杂度为 O ( n log ⁡ n ) O(n \log n) O(nlogn)
在具体实现步骤中,我们首先对每一种颜色使用 v e c t o r vector vector存起来。每次修改时,根据启发式合并的方法来暴力合并,然后处理此次合并对答案的影响(答案是不增的)。为了处理颜色映射问题,如果我们把颜色 1 1 1 染成颜色 2 2 2 并且 ∣ S 1 ∣ > ∣ S 2 ∣ |S_1| > |S_2| S1>S2,那么我们应该把颜色 2 2 2 加入到颜色 1 1 1 的集合。为了处理这种情况,我们只需要记录一下该颜色的集合中实际的颜色即可

代码

#include<bits/stdc++.h>
#define int long long
#define endl "\n"
using namespace std;
const int N=2e5+3;
const int LOGN=18; 
using i64 = long long;
int n,m,q;
vector<int> pos[10*N];
int ans=0;
void solve()
{
    cin>>n>>m;
    vector<int> a(n+2);
    for(int i=1;i<=n;i++){
        cin>>a[i];
        pos[a[i]].push_back(i);
    } 
    a[0]=a[n+1]=0;
    for(int i=0;i<=n;i++) ans+=(a[i]!=a[i+1]);
    //cout<<ans<<endl;
    while(m--)
    {
        int op;
        cin>>op;
        if(op==2)
        {
            cout<<ans-1<<endl;
            continue;
        }
        else if(op==1)
        {
            int x,y;
            cin>>x>>y;
            if(x==y) continue;
            if(pos[x].size()>pos[y].size()) pos[x].swap(pos[y]);
            auto modify = [&](int p,int col) -> void{
                ans-=(a[p]!=a[p-1])+(a[p]!=a[p+1]);
                a[p]=col;
                ans+=(a[p]!=a[p-1])+(a[p]!=a[p+1]);
            };
            if(pos[y].empty()) continue;
            int col=a[pos[y][0]];
            for(auto p : pos[x])
            {
                modify(p,col);
                pos[y].push_back(p);
            }
            pos[x].clear();
            //cout<<ans-1<<endl;
        }
    }
   
}
signed main()
{
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    int T;
    T=1;
    //cin>>T;
    while(T--)
     {
         solve();
     }
     return 0;
} 

树上启发式合并

遍历节点 u 的步骤

在遍历节点 u 时,我们按照以下步骤进行操作:

  1. 遍历轻儿子并计算答案

    • 首先遍历节点 u 的轻(非重)儿子。
    • 计算这些轻儿子的答案,但不保留它们对 cnt 数组的影响。
  2. 遍历重儿子并保留影响

    • 接着遍历节点 u 的重儿子。
    • 计算重儿子的答案,并保留它对 cnt 数组的影响。
  3. 再次遍历轻儿子的子树结点

    • 最后,再次遍历节点 u 的轻儿子的子树结点。
    • 加入这些结点的贡献,以得到节点 u 的最终答案。

通过这种方式,我们可以有效地计算节点 u 的答案,同时确保重儿子的贡献被保留,轻儿子的贡献在需要时可以重新计算。

int n,m;
int c[N];
int l[N],r[N],id[N],sz[N],hs[N],tot;
vector<int> e[N];
int cnt[N]; //每一个颜色出现次数
int maxcnt; //众数出现次数
int sumcnt,ans[N]; //众数出现的和
void dfs_init(int u,int f)
{
	l[u] = ++tot;
	id[tot] = u;
	sz[u] = 1;
	hs[u] = -1;
	for(auto v : e[u])
	{
		if(v==f) continue;
		dfs_init(v,u);
		sz[u] += sz[v];
		if(hs[u] == -1 || sz[v] > sz[hs[u]]) hs[u] = v;
	}
	r[u] = tot;
}
void dfs_solve(int u,int f,bool keep)
{
	for(auto v : e[u])
	{
		if(v != f && v != hs[u])
		{
			dfs_solve(v,u,false);
		}
	}
	if(hs[u] != -1){
		dfs_solve(hs[u],u,true);
		//重儿子集合
	}
	auto add = [&](int x){
	};
	auto del = [&](int x){
	};
	for(auto v : e[u]){
		if(v!=f && v != hs[u]){  //v是轻儿子
			// 把v子树里所有点加入到重儿子集合中
			for(int x=l[v];x<=r[v];x++)
				add(id[x]);
		}
	}
	add(u);
	ans[u]=sumcnt;
	//把u 本身加入
	if(!keep){
		//清空
		for(int x=l[u];x<=r[u];x++){
			del(id[x]);
		}
	}
}

题目——模板

E. Lomsat gelral

给你一棵有根的树,根位于顶点 1 。每个顶点都涂有某种颜色。
如果在顶点 v 的子树中,没有其他颜色比颜色 c 出现的次数更多,那么我们就称颜色 c 在顶点 v 的子树中占主导地位。因此,在某个顶点的子树中,可能会有两种或两种以上的颜色占主导地位。
顶点 v 的子树是顶点 v 和其他所有包含顶点 v 的顶点。
对于每个顶点 v 求顶点 v 的子树中所有支配色的总和。

代码:

#include<bits/stdc++.h>
#define int long long
#define endl "\n"
using namespace std;

const int N = 3e5+10;
using i64 = long long;

int n,m;
int c[N];
int l[N],r[N],id[N],sz[N],hs[N],tot;
vector<int> e[N];
int cnt[N]; //每一个颜色出现次数
int maxcnt; //众数出现次数
int sumcnt,ans[N]; //众数出现的和
void dfs_init(int u,int f)
{
	l[u] = ++tot;
	id[tot] = u;
	sz[u] = 1;
	hs[u] = -1;
	for(auto v : e[u])
	{
		if(v==f) continue;
		dfs_init(v,u);
		sz[u] += sz[v];
		if(hs[u] == -1 || sz[v] > sz[hs[u]]) hs[u] = v;
	}
	r[u] = tot;
}
void dfs_solve(int u,int f,bool keep)
{
	for(auto v : e[u])
	{
		if(v != f && v != hs[u])
		{
			dfs_solve(v,u,false);
		}
	}
	if(hs[u] != -1){
		dfs_solve(hs[u],u,true);
		//重儿子集合
	}
	auto add = [&](int x){
		x=c[x];
		cnt[x]++;
		if(cnt[x] > maxcnt) maxcnt=cnt[x],sumcnt=0;
		if(cnt[x] == maxcnt) sumcnt+=x;
	};
	auto del = [&](int x){
		x=c[x];
		cnt[x]--;
	};
	for(auto v : e[u]){
		if(v!=f && v != hs[u]){  //v是轻儿子
			// 把v子树里所有点加入到重儿子集合中
			for(int x=l[v];x<=r[v];x++)
				add(id[x]);
		}
	}
	add(u);
	ans[u]=sumcnt;
	//把u 本身加入
	if(!keep){
		//清空
		maxcnt=0;
		sumcnt=0;
		for(int x=l[u];x<=r[u];x++){
			del(id[x]);
		}
	}
}
signed main()
{
	
	cin>>n;
	for(int i=1;i<=n;i++) cin>>c[i];
	for(int i=1;i<n;i++)
	{
		int u,v;
		cin>>u>>v;
		e[u].push_back(v);
		e[v].push_back(u);
	}
	dfs_init(1,0);
	dfs_solve(1,0,0);
	for(int i=1;i<=n;i++) cout<<ans[i]<<" \n"[i==n];
}

[IOI2011] Race

P4149 [IOI2011] Race

题目描述

给一棵树,每条边有权。求一条简单路径,权值和等于 k k k,且边的数量最小。

输入格式

第一行包含两个整数 n , k n,k n,k,表示树的大小与要求找到的路径的边权和。

接下来 n − 1 n-1 n1 行,每行三个整数 u i , v i , w i u_i,v_i,w_i ui,vi,wi,代表有一条连接 u i u_i ui v i v_i vi,边权为 w i w_i wi 的无向边。

注意:点从 0 0 0 开始编号

输出格式

输出一个整数,表示最小边数量。

如果不存在这样的路径,输出 − 1 -1 1

样例 #1

样例输入 #1

4 3
0 1 1
1 2 2
1 3 4

样例输出 #1

2

提示

对于 100 % 100\% 100% 的数据,保证 1 ≤ n ≤ 2 × 1 0 5 1\leq n\leq 2\times10^5 1n2×105 0 ≤ k , w i ≤ 1 0 6 0\leq k,w_i\leq 10^6 0k,wi106 0 ≤ u i , v i < n 0\leq u_i,v_i<n 0ui,vi<n

思路:

d e p 1 [ u ] dep1[u] dep1[u]表示 u u u的深度, d e p 2 [ u ] dep2[u] dep2[u]表示 u u u到根节点的路径长度.对于任意两个点 u , v u,v u,v,最近公共祖先为 p p p,他们之间的简单路径值 d e p 2 [ u ] + d e p 2 [ v ] − 2 × d e p 2 [ p ] dep2[u]+dep2[v]-2×dep2[p] dep2[u]+dep2[v]2×dep2[p].考虑启发式合并,对于每一个 p p p,用一个 m a p map map,记录每一个路径值到根节点的最短距离 v a l val val,然后遍历每一个轻儿子 v v v,是否存在已经记录的结点 u u u,使得 d e p 2 [ u ] = k − d e p 2 [ v ] + 2 × d e p 2 [ u ] dep2[u]=k-dep2[v]+2×dep2[u] dep2[u]=kdep2[v]+2×dep2[u],然后将轻儿子加入到重儿子集合中。

代码:

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N=3e5+10,mod=998244353;
typedef long long ll;
typedef pair<int,int> PII;
int T;
int n,m,k,q;
vector<PII> e[N];
int dep1[N],dep2[N];
int l[N],r[N],dfn[N],hs[N],sz[N],tot;
int ans;
map<int,int> val;
void dfs_init(int u,int f)
{
    l[u]=++tot;
    hs[u]=-1;
    sz[u]=1;
    dfn[tot]=u;
    //cout<<u<<endl;
    for(auto [v,w] : e[u])
    {
        if(v==f) continue;
        dep1[v]=dep1[u]+1;
        dep2[v]=dep2[u]+w;
        dfs_init(v,u);
        sz[u]+=sz[v];
        if(hs[u] == -1 || sz[hs[u]] < sz[v]) hs[u]=v;
    }
    r[u]=tot;
}
void dfs_solve(int u,int f,int keep)
{
    //cout<<hs[u]<<endl;
    for(auto [v,w] : e[u])
    {
        if(v!=hs[u]&&v!=f) 
            dfs_solve(v,u,0);
    }
    if(hs[u]!=-1) dfs_solve(hs[u],u,1);
    auto query = [&](int w)
    {
        int d2=k+2*dep2[u]-dep2[w];
        if(val.count(d2))
            ans=min(ans,val[d2]+dep1[w]-2*dep1[u]);
    };
    auto add = [&](int w)
    {
        if(val.count(dep2[w]))
            val[dep2[w]]=min(val[dep2[w]],dep1[w]);
        else val[dep2[w]]=dep1[w];
    };
    for(auto [v,w] : e[u])
    {
        if(v==f||v==hs[u]) continue;
        for(int x=l[v];x<=r[v];x++)
            query(dfn[x]);
        for(int x=l[v];x<=r[v];x++)
            add(dfn[x]);
    }
    query(u);add(u);
    if(!keep){
        val.clear();
    }
}
void solve()
{
    cin>>n>>k;
    for(int i=1;i<n;i++)
    {
        int u,v,w;   
        cin>>u>>v>>w;
        ++u,++v;
        e[u].push_back({v,w});
        e[v].push_back({u,w});
    }
    ans=n+1;
    dfs_init(1,0);
    dfs_solve(1,0,0);
    if(ans<n+1) cout<<ans<<endl;
    else cout<<"-1"<<endl;
}
signed main()
{
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    T=1;
    //cin>>T;
    while(T--)
     {
         solve();
     }
     return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值