- 博客(191)
- 资源 (1)
- 收藏
- 关注
原创 【酒店管理与推荐系统】Python+Django网页界面平台+推荐算法+管理系统网站
酒店管理系统。分为普通用户和管理员两个角色管理员:在后台管理系统中可以对用户和酒店房间等信息进行管理Django是一个高级的Python Web框架,它鼓励快速开发和干净、实用的设计。Django遵循MVC设计模式,即模型(Model)、视图(View)和模板(Template)。它旨在让开发者能够快速构建网站,同时提供许多内置功能,如用户认证、内容管理、站点地图、RSS订阅等,无需从头开始编写。自动管理数据库迁移,使得数据库的版本控制变得简单。
2024-11-02 14:20:44 328
原创 【果蔬购物商城管理与推荐系统】Python+Django网页界面+协同过滤推荐算法+管理系统网站
果蔬购物管理与推荐系统。本系统以Python作为主要开发语言,前端通过HTML、CSS、BootStrap等框架搭建界面,后端使用Django框架作为逻辑处理,通过Ajax实现前后端的数据通信。并基于用户对商品的评分信息,采用协同过滤推荐算法,实现对当前登录用户的个性化商品推荐。该系统分为普通用户和管理员两个角色普通用户登录、注册普通用户查看商品、加入购物车、购买、查看详情、发布评论、进行评分、查看购物车、个人订单、商品推荐等界面功能管理员可以对商品和用户所有信息进行管理。
2024-11-02 14:03:29 260
原创 【蔬菜识别】Python+深度学习+CNN卷积神经网络算法+TensorFlow+人工智能+模型训练
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集(‘土豆’, ‘大白菜’, ‘大葱’, ‘莲藕’, ‘菠菜’, ‘西红柿’, ‘韭菜’, ‘黄瓜’),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
2024-11-02 13:51:16 302
原创 【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。局部感知能力:通过卷积层,CNN能够捕捉图像的局部特征,如边缘和纹理信息,这使得它在处理图像时具有空间感知能力。参数共享:卷积层中的权重在整个输入图像上共享,减少了模型的参数数量,降低了过拟合的风险,并提高了训练效率。平移不变性。
2024-11-01 14:21:42 459
原创 【美食管理与推荐系统】Python+Django网页系统平台+管理系统+网站开发+推荐算法
美食管理与推荐系统。本系统使用Python作为主要开发语言开发的一个美食管理推荐网站平台。网站前端界面采用HTML、CSS、BootStrap等技术搭建界面。后端采用Django框架处理用户的逻辑请求,并将用户的相关行为数据保存在数据库中。通过Ajax技术实现前后端的数据通信。创新点:项目中使用协同过滤推荐算法通过用户对美食的评分作为推荐数据基础,通过计算相似度实现对当前登录用户的个性化推荐。系统分为管理员和用户两个角色管理员在后台系统中可以对用户和食物信息进行管理。
2024-10-30 15:44:50 258
原创 【花店管理与推荐系统】Python+管理系统+网站开发+Django网页界面+推荐系统
花店鲜花管理与推荐系统。本系统使用Python作为主要开发语言开发的一个花店鲜花管理与推荐的网站平台。网站前端界面采用HTML、CSS、BootStrap等技术搭建界面。后端采用Django框架处理用户的逻辑请求,并将用户的相关行为数据保存在数据库中。通过Ajax技术实现前后端的数据通信。创新点:项目中使用基于用户的协同过滤推荐算法通过用户对鲜花的评分作为推荐数据基础,通过计算相似度实现对当前登录用户的个性化推荐。系统分为管理员和用户两个角色。
2024-10-30 15:27:46 418
原创 【果蔬识别】Python+卷积神经网络算法+深度学习+人工智能+机器学习+TensorFlow+计算机课设项目+算法模型
果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜(‘土豆’, ‘圣女果’, ‘大白菜’, ‘大葱’, ‘梨’, ‘胡萝卜’, ‘芒果’, ‘苹果’, ‘西红柿’, ‘韭菜’, ‘香蕉’, ‘黄瓜’),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
2024-10-30 15:22:37 1358
原创 【手势识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+机器学习+Django网页界面+算法模型
手势识别系统,使用Python作为主要编程语言,通过收集了10种手势图片数据集(0~9),然后基于TensorFlow搭建卷积神经网络算法模型,然后训练模型得到一个识别精度较高的模型文件,在基于Django搭建网页端操作界面平台,实现用户上传一张图片识别其名称。卷积神经网络(CNN)是一种深度学习算法,特别适合于图像识别任务。它通过模拟人类视觉皮层处理图像的方式,能够自动提取图像特征。卷积层:使用滤波器(或称为卷积核)在输入图像上滑动,提取局部特征,如边缘、纹理等。激活函数。
2024-10-30 15:14:10 719
原创 【电影管理与推荐系统】Python+Django网页界面+管理系统+协同过滤推荐算法
电影推荐管理系统。本系统使用Python作为主要开发语言,前端采用HTML、CSS、BootStrap等技术语言框架搭建展示界面,后端采用Django作为功能逻辑处理,并使用Ajax实现前端与和后端的通信。系统平台分为管理员和用户两个角色管理员在后台管理系统中可以对上述的用户和电影所有数据进行管理协同过滤(Collaborative Filtering)是一种推荐系统算法,它基于用户或物品之间的相似性来预测用户可能喜欢的物品。用户相似性。
2024-10-25 15:20:02 273
原创 【天气识别系统】Python+卷积神经网络算法+人工智能+深度学习+TensorFlow+算法模型训练+Django网页界面
天气识别系统,以Python作为主要编程语言,通过收集了4种常见的天气图像数据集(多云、雨天、晴天、日出),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练,最后得到一个识别精度较高的h5格式模型文件,然后基于Django搭建Web网页端操作界面,实现用户上传一张天气图片识别其名称。
2024-10-25 15:05:55 529
原创 【鱼类识别系统】Python+人工智能项目+深度学习项目+卷积神经网络算法+算法模型+TensorFlow
鱼类识别系统,使用Python作为主要编程语言开发,通过收集常见的30种鱼类(‘墨鱼’, ‘多宝鱼’, ‘带鱼’, ‘石斑鱼’, ‘秋刀鱼’, ‘章鱼’, ‘红鱼’, ‘罗非鱼’, ‘胖头鱼’, ‘草鱼’, ‘银鱼’, ‘青鱼’, ‘马头鱼’, ‘鱿鱼’, ‘鲇鱼’, ‘鲈鱼’, ‘鲍鱼’, ‘鲑鱼’, ‘鲢鱼’, ‘鲤鱼’, ‘鲫鱼’, ‘鲳鱼’, ‘鲷鱼’, ‘鲽鱼’, ‘鳊鱼’, ‘鳗鱼’, ‘黄鱼’, ‘黄鳝’, ‘黑鱼’, ‘龙头鱼’)图片作为数据集,然后使用TensorFlow搭建ResNet5
2024-10-21 14:49:31 693
原创 【植物识别系统】Python+人工智能+深度学习+卷积神经网络算法+TensorFlow+算法模型+Django网页界面平台
植物识别系统,使用Python作为主要编程语言开发,通过收集常见的6中植物树叶(‘广玉兰’, ‘杜鹃’, ‘梧桐’, ‘樟叶’, ‘芭蕉’, ‘银杏’)图片作为数据集,然后使用TensorFlow搭建ResNet50算法网络模型,通过对数据集进行处理后进行模型迭代训练,得到一个识别精度较高的H5模型文件。并基于Django框架开发网页端平台,实现用户在网页上上传一张植物树叶图片识别其名称。TensorFlow 是一个强大的开源机器学习框架,广泛应用于图像识别领域。
2024-10-21 14:46:39 374
原创 【中草药识别系统】Python+卷积神经网络算法+深度学习项目+人工智能项目+TensorFlow+图像识别+Django网页界面+CNN算法
中草药识别系统。本系统基于TensorFlow搭建卷积神经网络算法(ResNet50算法)通过对10中常见的中草药图片数据集(‘丹参’, ‘五味子’, ‘山茱萸’, ‘柴胡’, ‘桔梗’, ‘牡丹皮’, ‘连翘’, ‘金银花’, ‘黄姜’, ‘黄芩’)进行训练,得到一个识别精度较高的H5格式模型文件,然后基于Django开发可视化的Web网页操作界面,实现用户上传一张图片识别其名称。TensorFlow是一个由Google开发的开源机器学习库,广泛应用于各种人工智能领域,特别是在图像识别技术方面表现出色。
2024-10-21 14:39:21 1114
原创 【食物识别系统】Python+卷积神经网络算法+人工智能+深度学习+TensorFlow+算法模型训练+Django网页界面+图像识别
食物识别系统。该项目通过构建包含11种常见食物类别(包括’Bread’, ‘Dairy product’, ‘Dessert’, ‘Egg’, ‘Fried food’, ‘Meat’, ‘Noodles-Pasta’, ‘Rice’, ‘Seafood’, ‘Soup’, ‘Vegetable-Fruit’)的图片数据集,并利用TensorFlow框架下的ResNet50神经网络模型进行开发。项目流程包括数据预处理和模型训练,最终生成一个高精度的H5模型文件用于识别。
2024-10-21 14:37:48 399
原创 【蝴蝶识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+图像识别+算法模型
蝴蝶识别系统,本系统使用Python作为主要开发语言,通过收集了20种蝴蝶图片数据集(‘001.黑三线凤蝶’, ‘002.褐脉三线凤蝶’, ‘003.黄斑翠凤蝶’, ‘004.暗脉翠凤蝶’, ‘005.密斑翠凤蝶’, ‘006.青凤蝶’, ‘007.绿带青凤蝶’, ‘008.玉带青凤蝶’, ‘009.柑橘凤蝶’, ‘010.长尾翠凤蝶’, ‘011.绿尾翠凤蝶’, ‘012.红纹凤蝶’, ‘013.黄凤蝶’, ‘014.赤斑凤蝶’, ‘015.红珠凤蝶’, ‘016.阿尔西诺凤蝶’, ‘017.弧斑凤蝶’,
2024-10-20 20:17:00 499
原创 【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集(‘矮花叶病’, ‘健康’, ‘灰斑病一般’, ‘灰斑病严重’, ‘锈病一般’, ‘锈病严重’, ‘叶斑病一般’, ‘叶斑病严重’),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
2024-10-19 19:31:58 762
原创 【手写数字识别】Python+CNN卷积神经网络算法+人工智能+深度学习+模型训练
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。卷积神经网络(Convolutional Neural Network,CNN)是一种专门用于处理图像数据的深度学习算法,广泛应用于图像识别、目标检测、自然语言处理等领域。CNN 通过模拟生物视觉系统的工作方式,自动提取图像的特征,并通过多个层次逐步构建对图像的理解。
2024-10-17 15:27:40 459
原创 【表情识别】Python+卷积神经网络算法+人工智能+深度学习+Django网页界面+算法模型+TensorFlow
基于Python和TensorFlow,开发了一个表情识别系统,该系统利用先进的深度学习技术,通过卷积神经网络模型ResNet50对人脸表情进行识别。该系统主要针对七种基本人脸表情:中性、愤怒、厌恶、恐惧、快乐、悲伤和惊讶,进行分类和识别。这种表情识别技术在人机交互、情绪分析、安全监控等领域具有广泛的应用前景。ResNet50是一种具有50层网络的深度残差网络,因其出色的性能和较低的训练成本,在图像识别任务中广受欢迎。
2024-10-17 15:22:13 1365
原创 【植物病害识别】Python+卷积神经网络算法+人工智能+深度学习+Django网页界面+TensorFlow+模型训练+计算机课设项目
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片(‘细菌性叶枯病’, ‘稻瘟病’, ‘褐斑病’, ‘稻瘟条纹病毒病’)作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
2024-10-17 15:19:59 564
原创 【服装识别】Python+卷积神经网络算法+人工智能+深度学习+算法模型训练+Django网页界面+TensorFlow
服装识别系统,本系统作为图像识别方面的一个典型应用,使用Python作为主要编程语言,并通过TensorFlow搭建ResNet50卷积神经算法网络模型,通过对18种不同的服装(‘黑色连衣裙’, ‘黑色衬衫’, ‘黑色鞋子’, ‘黑色短裤’, ‘蓝色连衣裙’, ‘蓝色衬衫’, ‘蓝色鞋子’, ‘蓝色短裤’, ‘棕色鞋子’, ‘棕色短裤’, ‘绿色衬衫’, ‘绿色鞋子’, ‘绿色短裤’, ‘红色连衣裙’, ‘红色鞋子’, ‘白色连衣裙’, ‘白色鞋子’, ‘白色短裤’)数据集进行训练,最后得到一个识别精度较高
2024-10-17 15:18:17 941
原创 【商品识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+Django网页界面+图像识别
商品识别系统,本系统使用Python作为主要开发语言,通过收集了7种常见的商品图像数据集(‘杯子’, ‘椅子’, ‘汽车’, ‘电脑’, ‘电视机’, ‘衣服’, ‘鞋子’),然后基于TensorFlow搭建卷积神经网络算法模型,然后进行多轮迭代训练,最后得到一个识别精度较高的模型文件,再使用Django开发了一个Web操作的网页平台,实现用户上传一张商品图片识别其名称。TensorFlow 是一个开源的机器学习框架,广泛应用于图像识别领域。它提供了丰富的工具和库,使得开发者可以轻松构建和训练神经网络模型。
2024-10-17 15:13:11 417
原创 【音乐管理与推荐系统】Python+协同过滤推荐算法+管理系统+Django网页界面平台
音乐推荐与管理系统。本系统采用Python作为主要开发语言,前端使用HTML、CSS、BootStrap等技术搭建界面平台,后端使用Django框架处理请求,并基于Ajax等技术实现前端与后端的数据通信。在音乐个性推荐功能模块中采用通过Python编写协同过滤推荐算法模块,实现对当前登录用户的个性化推荐。系统分为普通用户和管理员两个角色管理员在后台管理系统中可以管理音乐和用户等所有信息协同过滤推荐算法是一种通过用户行为或物品之间的相似性来进行推荐的算法,广泛应用于电商、流媒体等场景。
2024-10-17 15:04:43 401
原创 【旅游管理与推荐系统】Python+Django网页界面平台+协同过滤推荐算法+管理系统
旅游管理与推荐系统。本系统使用Python作为主要编程语言,前端采用HTML、CSS、BootStrap等技术实现界面展示平台的开发,后端使用Django框架处理用户响应请求,并使用Ajax等技术实现前后端的数据通信。系统分为两个角色:用户和管理员在本系统中的“猜你喜欢”界面中,通过使用协同过滤推荐算法,基于用户对景点的打分数据作为基础,通过算法模块实现对当前登录用户的个性化推荐。管理员可进入后台管理系统平台中对景点和用户数据进行管理。
2024-10-13 16:44:59 333
原创 【电商购物管理系统】Python+Django网页界面平台+商品管理+数据库
电商购物管理系统,本系统前端使用HTML、CSS、BootStrap等技术搭建前端界面,后端使用Django框架处理用户的逻辑请求。管理员登录与管理:管理员可以登录后台,对用户和商品进行增删改查的操作。用户系统:普通用户可以进行注册和登录。购物车功能:用户在选择商品后,可以添加到购物车,并随时调整商品数量。商品详情:用户点击商品,可以查看其详细描述、价格、库存等信息,并可进行评论。数据可视化:通过Echart,我们可以生成直观的数据图表,例如销售统计、用户行为分析等。
2024-10-13 16:30:00 579
原创 【文本情感分析识别】Python+SVM分类算法+情感分析+机器学习
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。本项目通过开发一个基于Python语言的文本情感分析系统,能够自动识别文本中的情感倾向,并区分积极情感和消极情感。文本情感分析是自然语言处理中的一个重要应用领域,广泛应用于舆情监控、用户反馈分析和市场调研等场景。
2024-10-13 15:33:18 1017
原创 【新闻文本分类识别】Python+卷积神经网络算法+人工智能+深度学习+算法模型+文本处理
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集(“体育类”, “财经类”, “房产类”, “家居类”, “教育类”, “科技类”, “时尚类”, “时政类”, “游戏类”, “娱乐类”),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
2024-10-13 15:30:26 451
原创 【验证码识别】Python+卷积神经网络算法+人工智能+深度学习+Django网页界面+计算机课设项目+TensorFlow+算法模型
验证码识别,使用Python作为开发语言,通过TensorFlow搭建CNN卷积神经网络算法模型,并通过对收集的几千张验证码图片作为数据集,然后进行迭代训练,最终得到一个识别精度较高的模型文件,然后使用Django框架搭建网页端操作界面,实现用户上传一张验证码图片识别其名称。
2024-10-13 15:23:01 593
原创 【车牌识别】Python+卷积神经网络算法+人工智能+深度学习+Django网页界面+TensorFlow+模型训练+计算机课设项目
车牌识别系统,本系统使用Python作为主要编程语言,通过收集了一万多张车牌图片作为数据集,基于TensorFlow搭建CNN卷积神经网络算法模型,并通过多轮迭代训练,最终得到一个识别精度较高的模型。然后使用Django开发网页端操作界面平台,实现用户上传一张车牌图片识别其结果。卷积神经网络(Convolutional Neural Network, CNN)是一种广泛应用于图像识别任务的深度学习算法。
2024-10-13 15:16:28 477
原创 【昆虫识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+Django网页界面+TensorFlow+算法模型
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集(‘蜜蜂’, ‘甲虫’, ‘蝴蝶’, ‘蝉’, ‘蜻蜓’, ‘蚱蜢’, ‘蛾’, ‘蝎子’, ‘蜗牛’, ‘蜘蛛’)进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。TensorFlow是一个广泛使用的开源机器学习框架,尤其适合构建和训练深度学习模型。
2024-10-13 15:10:19 341
原创 【海洋生物识别】Python+卷积神经网络算法+人工智能+深度学习+Django网页界面+TensorFlow+计算机课设项目
海洋生物识别系统。
2024-10-13 15:08:45 910
原创 【谷物农产品识别】Python+卷积神经网络算法+人工智能+深度学习+Django网页界面+计算机课设项目+TensorFlow
基于深度学习的图像识别技术在农业领域的应用已日益增长,尤其是在作物和谷物识别方面。随着计算技术的发展和机器学习算法的进步,利用这些技术对农产品进行快速准确的分类和识别,不仅可以提高农业生产的效率,还可以在食品安全和质量控制方面发挥重要作用。本系统通过开发一个基于深度学习的谷物识别系统,该系统采用Python作为主要编程语言,并结合TensorFlow框架构建了基于ResNet50的卷积神经网络模型。
2024-10-13 15:06:57 736
原创 【水果识别系统】Python+卷积神经网络算法+人工智能+深度学习+图像识别+算法模型训练
水果识别系统。本项目使用Python作为主要编程语言,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的5种常见的水果(圣女果、梨、芒果、苹果、香蕉)等图片数据集进行训练,最终得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端操作界面,实现用户上传一张水果图片识别其名称。卷积神经网络(Convolutional Neural Network, CNN)是一种专门用于处理图像数据的深度学习模型。
2024-10-12 22:23:52 454
原创 【垃圾识别分类系统】Python+卷积神经网络算法+图像识别+人工智能+深度学习+机器学习+ResNet50算法模型
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集(‘塑料’, ‘玻璃’, ‘纸张’, ‘纸板’, ‘金属’),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。随着环境问题日益严重,垃圾分类成为解决废物处理问题的重要措施之一。为了提高垃圾分类效率并减少人力成本,智能垃圾分类系统的需求逐渐增大。
2024-10-12 21:58:10 777
原创 【花卉识别系统】Python+卷积神经网络算法+人工智能+深度学习+图像识别+算法模型
花朵识别系统。本系统采用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,并基于前期收集到的5种常见的花朵数据集(向日葵、玫瑰、蒲公英、郁金香、菊花)进行处理后进行模型训练,最后得到一个识别精度较高的模型,然后保存为本地的h5格式文件,便于后续调用使用。在可视化操作界面开发中使用Django开发Web网页操作界面,实现用户上传一张花朵图片识别其名称。在本项目中,我们设计并实现了一个基于人工智能技术的花朵识别系统。
2024-10-12 21:56:43 1368
原创 【交通标志识别系统】Python+卷积神经网络算法+人工智能+深度学习+机器学习+算法模型
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。在本项目中,开发了一个基于人工智能的交通标志识别系统,旨在利用深度学习技术对常见的交通标志进行高效、准确的识别。
2024-10-12 21:53:35 935
原创 【鸟类识别系统】Python+卷积神经网络算法+人工智能+深度学习+ResNet50算法+计算机课设项目
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。本项目通过人工智能技术实现对鸟类图像的自动识别,满足用户在日常生活中快速、准确地识别鸟类的需求。
2024-10-12 21:48:40 1191
原创 【动物识别系统】Python+卷积神经网络算法+人工智能+深度学习+机器学习+计算机课设项目+Django网页界面
动物识别系统。本项目以Python作为主要编程语言,并基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集4种常见的动物图像数据集(猫、狗、鸡、马)然后进行模型训练,得到一个识别精度较高的模型文件,然后保存为本地格式的H5格式文件。再基于Django开发Web网页端操作界面,实现用户上传一张动物图片,识别其名称。
2024-10-12 21:43:17 904
原创 一文学会Python面向对象中封装、继承、多态使用
在Python这门强大而灵活的编程语言中,面向对象编程(OOP)是一个核心的概念,它主要包括三个基本的特性:封装、继承和多态。接下来,我将通过实际的代码示例和详细的解释,带你深入了解这三个概念,并掌握如何在Python中运用它们。
2023-11-01 19:47:00 154
原创 数据组合利器:从入门到精通Python中的zip()函数应用
zip()函数是Python内置的一个非常有用的函数,它可以将多个可迭代对象打包成一个元组构成的新的可迭代对象。本文将深入探讨zip()函数的用法,从入门到精通。通过本文的讲解,我们了解了zip()函数的基本用法和高级用法,以及它在循环、解压缩和转置等方面的应用。zip()函数可以将多个可迭代对象打包成一个新的可迭代对象。使用zip()函数可以在循环中同时迭代多个可迭代对象。当可迭代对象的长度不等时,zip()函数会停止在最短的可迭代对象结束迭代。结合*操作符可以实现多个列表的合并和转置。
2023-09-19 08:41:05 1306
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人