ctfshow crypto-BJDCTF2020-easyras

该代码段涉及RSA加密算法的实现和解密过程。通过给定的公钥(e,n),以及一个特定的计算z,文章展示了如何利用z的数学关系来推导出原信息m。这个过程涉及到对arctan和arth函数的导数计算,以及gmpy2库来执行大整数运算,最终找到私钥d,从而解密数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from Crypto.Util.number import getPrime,bytes_to_long
from sympy import Derivative
from fractions import Fraction
from secret import flag

p=getPrime(1024)
q=getPrime(1024)
e=65537
n=p*q
z=Fraction(1,Derivative(arctan(p),p))-Fraction(1,Derivative(arth(q),q))
m=bytes_to_long(flag)
c=pow(m,e,n)
print(c,z,n)
'''
output:
7922547866857761459807491502654216283012776177789511549350672958101810281348402284098310147796549430689253803510994877420135537268549410652654479620858691324110367182025648788407041599943091386227543182157746202947099572389676084392706406084307657000104665696654409155006313203957292885743791715198781974205578654792123191584957665293208390453748369182333152809882312453359706147808198922916762773721726681588977103877454119043744889164529383188077499194932909643918696646876907327364751380953182517883134591810800848971719184808713694342985458103006676013451912221080252735948993692674899399826084848622145815461035
32115748677623209667471622872185275070257924766015020072805267359839059393284316595882933372289732127274076434587519333300142473010344694803885168557548801202495933226215437763329280242113556524498457559562872900811602056944423967403777623306961880757613246328729616643032628964072931272085866928045973799374711846825157781056965164178505232524245809179235607571567174228822561697888645968559343608375331988097157145264357626738141646556353500994924115875748198318036296898604097000938272195903056733565880150540275369239637793975923329598716003350308259321436752579291000355560431542229699759955141152914708362494482
15310745161336895413406690009324766200789179248896951942047235448901612351128459309145825547569298479821101249094161867207686537607047447968708758990950136380924747359052570549594098569970632854351825950729752563502284849263730127586382522703959893392329333760927637353052250274195821469023401443841395096410231843592101426591882573405934188675124326997277775238287928403743324297705151732524641213516306585297722190780088180705070359469719869343939106529204798285957516860774384001892777525916167743272419958572055332232056095979448155082465977781482598371994798871917514767508394730447974770329967681767625495394441

'''

分析代码(注意output的值是分别指c,z,n的值,一开始眼挫把print()看成pow()

 所以对于m的求解已经知道c和n了,至于z看

z=Fraction(1,Derivative(arctan(p),p))-Fraction(1,Derivative(arth(q),q))

里面出现几个陌生函数

Fraction(x,y):把x当成分子,y当成分母,Fraction(x,y)会把输入的x,y化成最简的形式输出

Derivative(f(x),y:Derivative意思是求导,是当f(x)里的x等于y时对f(x)进行求导

arctan和arth都是数学上的函数(想了解可自行查找)

总之知道这里就是要对这两个的函数进行求导

arctan(x)求导得:1/(1+x^2)

arth(x)求导得:1/(1-x^2)

得的导数再倒数相减最后z=q^2+p^2

求m要d,求d要hip=(q-1)*(p-1),所以目的就是要用z构造出hip

因为z=q^2+p^2=(q+p)^2-2q*p且因为n=q*p

所以(q+p)^2=z+2n,同理(q-p)^2=z-2n

两式子相乘得((q+p)*(q-p))^2=z^2-4n^2=hip^2

这样开放就得到hip了,后面写脚本就容易了

import gmpy2
from Crypto.Util.number import long_to_bytes
c=7922547866857761459807491502654216283012776177789511549350672958101810281348402284098310147796549430689253803510994877420135537268549410652654479620858691324110367182025648788407041599943091386227543182157746202947099572389676084392706406084307657000104665696654409155006313203957292885743791715198781974205578654792123191584957665293208390453748369182333152809882312453359706147808198922916762773721726681588977103877454119043744889164529383188077499194932909643918696646876907327364751380953182517883134591810800848971719184808713694342985458103006676013451912221080252735948993692674899399826084848622145815461035
z=32115748677623209667471622872185275070257924766015020072805267359839059393284316595882933372289732127274076434587519333300142473010344694803885168557548801202495933226215437763329280242113556524498457559562872900811602056944423967403777623306961880757613246328729616643032628964072931272085866928045973799374711846825157781056965164178505232524245809179235607571567174228822561697888645968559343608375331988097157145264357626738141646556353500994924115875748198318036296898604097000938272195903056733565880150540275369239637793975923329598716003350308259321436752579291000355560431542229699759955141152914708362494482
n=15310745161336895413406690009324766200789179248896951942047235448901612351128459309145825547569298479821101249094161867207686537607047447968708758990950136380924747359052570549594098569970632854351825950729752563502284849263730127586382522703959893392329333760927637353052250274195821469023401443841395096410231843592101426591882573405934188675124326997277775238287928403743324297705151732524641213516306585297722190780088180705070359469719869343939106529204798285957516860774384001892777525916167743272419958572055332232056095979448155082465977781482598371994798871917514767508394730447974770329967681767625495394441
e=65537

hip=n-(gmpy2.iroot((z+2*n),2)[0])+1
d=gmpy2.invert(e,hip)
m=pow(c,d,n)
print(long_to_bytes(m))

 

### PyCharm 打开文件显示全的解决方案 当遇到PyCharm打开文件显示全的情况时,可以尝试以下几种方法来解决问题。 #### 方法一:清理缓存并重启IDE 有时IDE内部缓存可能导致文件加载异常。通过清除缓存再启动程序能够有效改善此状况。具体操作路径为`File -> Invalidate Caches / Restart...`,之后按照提示完成相应动作即可[^1]。 #### 方法二:调整编辑器字体设置 如果是因为字体原因造成的内容显示问题,则可以通过修改编辑区内的文字样式来进行修复。进入`Settings/Preferences | Editor | Font`选项卡内更改合适的字号大小以及启用抗锯齿功能等参数配置[^2]。 #### 方法三:检查项目结构配置 对于某些特定场景下的源码视图缺失现象,可能是由于当前工作空间未能正确识别全部模块所引起。此时应该核查Project Structure的Content Roots设定项是否涵盖了整个工程根目录;必要时可手动添加遗漏部分,并保存变更生效[^3]。 ```python # 示例代码用于展示如何获取当前项目的根路径,在实际应用中可根据需求调用该函数辅助排查问题 import os def get_project_root(): current_file = os.path.abspath(__file__) project_dir = os.path.dirname(current_file) while not os.path.exists(os.path.join(project_dir, '.idea')): parent_dir = os.path.dirname(project_dir) if parent_dir == project_dir: break project_dir = parent_dir return project_dir print(f"Current Project Root Directory is {get_project_root()}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sharpery

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值