通过74ls138构成的三人表决器

文章讲述了三人表决器的工作原理,即至少两人同意则结果为同意,这通过逻辑门电路实现。具体到74ls138芯片,在特定条件下以反码形式输出。当C、B输入1,A输入0时,二进制编码为110,导致Y6输出为0,其他输出为1。这一结果通过或非门处理后,LED1亮起表示同意。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三人表决器的原理为三人中至少两人同意则结果为同意,及输入信号至少两个1则结果为1。由此可推出表达式

 

通过74ls138的功能表可得出当G2A和G2B都接地,G1为高电平时工作且以反码形式输出。由表达式可得出对应的输出结果为Y3,Y5,Y6,Y7。

如图2中,当C、B输入1,A输入0时,对应的二进制编码为110,表示Y6输出为0其他为1。通过或非门输出结果1,在图1中由LED1亮表示同意。

<think>好的,用户想用与非门设计表决器电路,我需要结合他们提供的参考资料来解答。首先,用户提到的引用[1]是关于四路表决器的,但设计思路应该类似,可能需要调整输入数量。引用[2]提到组合逻辑电路和表决器的逻辑表达式,但可能没有详细步骤。引用[3]讨论了五表决器设计,原理类似,可以借鉴。 首先,我需要明确表决器的逻辑要求:当个输入中有两个或个为1时,输出为1。这需要先写出真值表,确定输出为1的条件。然后根据真值表推导逻辑表达式,并转换为与非门的形式。 接下来,根据真值表,当A、B、C中有至少两个为1时,输出Y为1。列出这些情况:ABC=011、101、110、111。对应的最小项是这些组合,合并后可以得到Y=AB + AC + BC。不过,用户需要用与非门实现,所以需要将表达式转换为与非-与非结构。 根据德摩根定律,可以将Y=AB + AC + BC转换为与非形式。首先,原式可以写成双重否定,然后应用德摩根律:Y = ( (AB)' ∧ (AC)' ∧ (BC)' )'。不过这样可能不是最简形式,可能需要进一步优化。或者,将表达式转换为两次与非操作,比如先写出AB、AC、BC的或,再转换成与非的组合。 然后,绘制电路图,可能需要使用多个与非门,比如第一级用来生成AB、AC、BC的与非,然后再将这些结果进行与非,最后再与非一次得到输出。需要确保每一步转换正确,并且使用的门数量最少。 同时,需要注意引用中的内容,比如引用[1]提到四路表决器使用与非门,当个或以上输入为1时输出1,这可能帮助验证转换步骤是否正确。此外,引用[2]提到组合逻辑电路的特性,输出仅取决于当前输入,这符合表决器设计需求。 最后,需要检查逻辑是否正确,是否满足所有情况,并考虑可能存在的电路优化方法,比如是否有更少的门数实现相同功能。可能还需要考虑实际电路中的延迟和门电路的扇入扇出问题,但用户可能只需要基础设计,所以先提供基本方案。</think>### 用与非门设计表决器电路的步骤 #### 一、逻辑要求分析 表决器满足以下条件: 当输入端$A$、$B$、$C$中 **至少两个为1** 时,输出端$Y=1$;否则$Y=0$。 符合组合逻辑电路特性,输出仅取决于当前输入[^2]。 #### 二、真值表与逻辑表达式 | A | B | C | Y | |---|---|---|---| | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 0 | | 0 | 1 | 0 | 0 | | 0 | 1 | 1 | 1 | | 1 | 0 | 0 | 0 | | 1 | 0 | 1 | 1 | | 1 | 1 | 0 | 1 | | 1 | 1 | 1 | 1 | **标准逻辑表达式**: $$Y = AB + AC + BC$$ #### 、转换为与非门形式 1. 对标准表达式进行二次取反(德摩根定律): $$Y = \overline{\overline{AB} \cdot \overline{AC} \cdot \overline{BC}}$$ 2. 表达式说明: - 第一级与非门:计算$\overline{AB}$、$\overline{AC}$、$\overline{BC}$ - 第二级与非门:对个中间结果再次进行与非运算 #### 四、电路设计方案 **所需元件**: - 3个二输入与非门(第一级) - 1个输入与非门(第二级) **原理图**: ``` A───┐ ┌───┬───────┐ ├─&─┤ │ │ B───┘ └───┤ │ │ & ├──Y A───┐ ┌───┤ │ ├─&─┤ │ │ C───┘ └───┤ │ │ │ B───┐ ┌───┤ │ ├─&─┤ │ │ C───┘ └───┘ │ ``` (注:实际与非门符号需替换为标准逻辑门图形) #### 五、验证说明 - **输入两/个1**:例如$A=1,B=1,C=0$时,$\overline{AB}=0$,其他中间结果均为1,最终输出$Y=\overline{0\cdot1\cdot1}=1$ - **输入零/一个1**:例如$A=0,B=0,C=1$时,所有中间与非结果为1,最终$Y=\overline{1\cdot1\cdot1}=0$
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值