二分答案
核心思路:1.将求取问题转化为判断问题
2.按题目定义多重判断函数求最优解
二分答案使用的条件:1.有界性 2.单调性
问题特点:1.最小值的最大化 2.最大值的最小化
具体思路(步骤):
1.确定问题类型(最小值的最大化,或者最大值的最小化)适用于二分答案
2.假设值x看是否符合题意,且x的值可以根据“可以更符合/不符合”的判断(搭配check()食用)不断更新------用while循环写二分模板
3.bool chcek()将题意的判断条件写在这个函数里面
4.在主函数得出最优解
代码框架:
bool check(int x){}
ans = 表示不存在的值
low = 最小可能的值
high = 最大可能的值
while(low <= high){
mid = (low + high) / 2;
if(check(mid)){
ans = mid;
low = mid + 1;//右半部分查找
}else{high = mid - 1}//左半部分查找
}
#跳石头问题(移走石头尽可能多,且两石头最短距离尽可能大 => 二分答案)
链接:登录—专业IT笔试面试备考平台_牛客网
来源:牛客网
题目描述
一年一度的“跳石头”比赛又要开始了!
这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。
为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 M 块岩石(不能移走起点和终点的岩石)。
输入描述:
输入文件第一行包含三个整数 L,N,M,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。 接下来 N 行,每行一个整数,第 i 行的整数 Di(0 < Di < L)表示第 i块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。
输出描述:
输出文件只包含一个整数,即最短跳跃距离的最大值。
1.有界性:两石头距离在[1, L]
2.单调性:移走的石头越多,最短的距离越长
#include <iostream>
#include <cstdio>
using namespace std;
const int N = 50010;
int L, n, m, a[N];//起点终点距离;岩石数;至多移走的岩石数;
//判定假设的最小距离最大值x是否合适
bool check(int x)//x为假设的最小距离最大值
{
int t = 0, cnt = 0;//人所在岩石位置;计数岩石移走的个数
for(int i = 1; i <= n; i++){//检验x是否比所有相邻两块石头的值都小
if(a[i] - t < x)//如果,第i块石头的距离比假设的最小距离x要小,
cnt++;//那么,就移走那块石头(被移走的石头数量+1)
else
t = a[i];//否则,人跳到第i块石头上
}
return cnt <= m;//确保移走的石头<=最大值
}
//二分模板
int bsearch(int l,int r)//左右边界
{
while (l < r){
int mid = (l + r +1) >> 1;//用于查找最小距离最大值
if(check(mid))//不断精确最短区间
l = mid;
else
r = mid - 1;
}
return l;
}
int main(void)
{
cin >> L >> n >> m;
for(int i = 1; i <= n; i++)
cin >> a[i];//每块石头的距离
int ans = bsearch(1, L);
cout << ans << endl;
return 0;
}
学习来源: