题目链接在这里:
# [蓝桥杯 2023 省 A] 更小的数
## 题目描述
![image](https://cdn.luogu.com.cn/upload/image_hosting/y1rd2iun.png)
小蓝有一个长度均为 $n$ 且仅由数字字符 $0 \sim 9$ 组成的字符串,下标从 $0$ 到 $n-1$,你可以将其视作是一个具有 $n$ 位的十进制数字 $num$,小蓝可以从 $num$ 中选出一段连续的子串并将子串进行反转,最多反转一次。小蓝想要将选出的子串进行反转后再放入原位置处得到的新的数字 $num_{new}$ 满足条件 $num_{new}<num$,请你帮他计算下一共有多少种不同的子串选择方案,只要两个子串在 $num$ 中的位置不完全相同我们就视作是不同的方案。
注意,我们允许前导零的存在,即数字的最高位可以是 $0$,这是合法的。
## 输入格式
输入一行包含一个长度为 $n$ 的字符串表示 $num$(仅包含数字字符 $0 \sim 9$),从左至右下标依次为 $0 \sim n-1$。
## 输出格式
输出一行包含一个整数表示答案。
## 样例 #1
### 样例输入 #1
```
210102
```
### 样例输出 #1
```
8
```
## 提示
#### 【样例说明】
一共有 $8$ 种不同的方案:
1. 所选择的子串下标为 $0\sim1$,反转后的 $num_{new} = 120102 < 210102$;
2. 所选择的子串下标为 $0\sim2$,反转后的 $num_{new} = 012102 < 210102$;
3. 所选择的子串下标为 $0\sim3$,反转后的 $num_{new} = 101202 < 210102$;
4. 所选择的子串下标为 $0\sim4$,反转后的 $num_{new} = 010122 < 210102$;
5. 所选择的子串下标为 $0\sim5$,反转后的 $num_{new} = 201012 < 210102$;
6. 所选择的子串下标为 $1\sim2$,反转后的 $num_{new} = 201102 < 210102$;
7. 所选择的子串下标为 $1\sim4$,反转后的 $num_{new} = 201012 < 210102$;
8. 所选择的子串下标为 $3\sim4$,反转后的 $num_{new} = 210012 < 210102$。
#### 【评测用例规模与约定】
对于 $20\%$ 的评测用例,$1 \le n \le 100$;
对于 $40\%$ 的评测用例,$1 \le n \le 1000$;
对于所有评测用例,$1 \le n \le 5000$。
题解:
这道题虽然说是找到更小的数,其实就是在这个字符串里找到一对数num[i]和num[j](i<j),保证num[i]>num[j],这样交换之后肯定能保证交换后的数一定比原来小(这里题干给的前导零允许存在就大大降低了难度),如果num[i]<num[j],那么交换之后肯定不会比原来小,那么就只剩下一种情况:num[i]==num[j],这时候就要判断num[i+1]和num[j-1]的大小,如此循环往复,直到分出大小,然后再根据上面的情况进行判断, 因为有一直相等的情况,所以循环条件也有tempi<tempj这一限制,最后附上代码:
代码:
#include <bits/stdc++.h>
using namespace std;
#define N 100010
#define ll long long
int main()
{
string s;
cin >> s;
ll res = 0;
int len = s.size();
for (int i = 0; i < len; ++i)
{
for (int j = i + 1; j < len; ++j)
{
if (s[i] > s[j])
{
res++;
}
else if (s[i] == s[j])
{
int tempi = i, tempj = j;
while (tempi < tempj && s[tempi] == s[tempj])
{
tempi++;
tempj--;
}
if (s[tempi] > s[tempj])
{
res++;
}
}
}
}
cout << res;
return 0;
}