C语言---离散数学实验--集合及二元关系的应用

目录

集合的运算:

题目要求:

代码:

等价关系的判定:

题目要求:

代码: 

N元关系

题目描述:

代码:


集合的运算:

题目要求:

一、集合的运算

(1)用数组A,B,C,E表示集合。输入数组A,B,E(全集),输入数据时要求检查数据是否重复(集合中的数据要求不重复),要求集合A,B是集合E的子集。以下每一个运算都要求先将集合C置成空集。

(2)二个集合的交运算:把数组A中元素逐一与数组B中的元素进行比较,将相同的元素放在数组C中,数组C便是集合A和集合B的交集。

(3)二个集合的并运算:把数组A中各个元素先保存在数组C中。将数组B中的元素逐一与数组B中的元素进行比较,把不相同的元素添加到数组C中,数组C便是集合A和集合B的并集。

(4)二个集合的差运算:把数组A中各个元素先保存在数组C中。将数组B中的元素逐一与数组B中的元素进行比较,把相同的元素从数组C中删除,数组C便是集合A和集合B的差A-B。

(5)集合的补运算:将数组E中的元素逐一与数组A中的元素进行比较,把不相同的元素保存到数组C中,数组C便是集合A关于集合E的补集。

代码:

#include<stdio.h>
void jiao(int a[30], int b[30], int c[30], int p, int q)
{
    int i, j, k = 0;
    for (i = 0; i < p; i++)
    {
        for (j = 0; j < q; j++)
        {
            if (a[i] == b[j])
            {
                c[k] = a[i];
                k++;
            }
        }
    }
    printf("交集:{");
    for (i = 0; i < k; i++)
    {
        if (i == k - 1)
        {
            printf("%d", c[i]);
        }
        else printf("%d,", c[i]);
    }
    printf("}\n");
}

void bing(int a[30], int b[30], int c[30], int p, int q)
{
    int i, j, n = 0, k = 0;
    for (i = 0; i < p; i++)
    {
        c[i] = a[i];
    }
    for (j = 0; j < q; j++)
    {
        c[i] = b[j];
        i++;
    }
    for (i = 0; i < p; i++)
    {
        for (j = 0; j < q; j++)
        {
            if (a[i] == b[j])
            {
                n++;
            }
        }
    }
    for (i = 0; i < p + q; i++)
    {
        for (j = 0; j < p + q; j++)
        {
            if (c[i] == c[j] && i != j)
            {
                for (k = j; k < p + q; k++)
                {
                    c[k] = c[k + 1];
                }
            }
        }
    }
    printf("并集:{");
    for (i = 0; i < k - n; i++)
    {
        if (i == k - n - 1)
        {
            printf("%d", c[i]);
        }
        else printf("%d,", c[i]);
    }
    if (n == 0)
    {
        for (i = 0; i < p + q; i++)
        {
            if (i == p + q - 1)
            {
                printf("%d", c[i]);
            }
            else printf("%d,", c[i]);
        }
    }
    printf("}\n");
}

void cha(int a[30], int b[30], int c[30], int p, int q)
{
    int i, j, k, m = 0;
    for (i = 0; i < p; i++)
    {
        for (j = 0; j < q; j++)
        {
            k = 0;
            if (a[i] == b[j])
            {
                k = 1;
            }
            if (k)
                break;
        }
        if (k == 0)
        {
            c[m] = a[i];
            m++;
        }
    }
    printf("差集{");
    for (i = 0; i < m; i++)
    {
        if (i != m - 1)
            printf("%d,", c[i]);
        else
            printf("%d", c[i]);
    }
    printf("}\n");
}

void bu(int a[30], int e[30], int c[30], int p, int q)
{
    int i, j, n = 0, m = 2;
    for (i = 0; i < q; i++)
    {
        for (j = 0; j < p; j++)
        {
            if (e[i] == a[j])
            {
                break;
            }
            if (e[i] != a[j] && j == p - 1)
            {
                c[n] = e[i];
                n++;
            }
        }
    }
    printf("补集:{");
    for (i = 0; i < n; i++)
    {
        if (i != n - 1)
            printf("%d,", c[i]);
        else
            printf("%d", c[i]);
    }
    printf("}\n");
}

int main()
{
    int n1, n2, i, j, t, s, n, k, m;
    int a[200], b[200], c[200], d[200], e[200];
    printf("集合A元素个数");
    scanf("%d", &n1);
    for (i = 0, j = 0; i < n1; i++, j++) 
    {
        scanf("%d", &a[i]);
        d[j] = a[i];
        for (n = 0; n < i; n++) 
        {
            if (a[i] == a[n]) 
            {
                printf("重新输入");
                for (i = 0, j = 0; i < n1; i++, j++) 
                {
                    scanf("%d", &a[i]);
                    d[j] = a[i];
                }
            }
            break;
        }
    }
    printf("集合B元素个数");
    scanf("%d", &n2);
    for (i = 0, j = n1; i < n2; i++, j++) 
    {
        scanf("%d", &b[i]);
        d[j] = b[i];
        for (k = 0; k < i; k++) 
        {
            if (b[k] == b[i]) 
            {
                printf("重新输入");
                for (i = 0, j = n1; i < n2; i++, j++) 
                {
                    scanf("%d", &b[i]);
                    d[j] = b[i];
                }
                break;
            }
        }

    }
    printf("集合E元素个数");
    scanf("%d", &m);
    for (i = 0; i < m; i++) 
    {
        scanf("%d", &e[i]);
        for (k = 0; k < i; k++) 
        {
            if (e[k] == e[i]) 
            {
                printf("重新输入");
                for (i = 0; i < m; i++) 
                {
                    scanf("%d", &e[i]);
                }
                break;
            }
        }
    }
    jiao(a, b, c, n1, n2);
    bing(a, b, c, n1, n2);
    cha(a, b, c, n1, n2);
    bu(a, e, c, n1, m);
}

等价关系的判定:

题目要求:

等价关系:集合A上的二元关系R同时具有自反性、对称性和传递性,则称R是A上的等价关系。

(1)A上的二元关系用一个n×n关系矩阵R=

表示,定义一个n×n数组r[n][n]表  示n×n矩阵关系。

(2)若R对角线上的元素都是1,则R具有自反性。

(3)若R是对称矩阵,则R具有对称性。对称矩阵的判断方法是:。

(4)关系的传递性判断方法:对任意i,j,k,若。

(5)求商集的方法:商集是由等价类组成的集合。

代码: 

#include<stdio.h>
char a[10][10];
int i, j, n;
void f1()
{
	printf("二元关系的域的个数:\n");
	scanf("%d", &n);
	printf("输入关系矩阵\n");
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < n; j++)
		{
			scanf("%d", &a[i][j]);
		}
	}
}

int f2()
{
	for (int i = 0; i < n; i++)
	{
		if (a[i][i] == 1)
		{
			printf("具有自反性\n");
			return 1;
		}
		else if (a[i][i] != 1)
		{
			printf("不具有自反性\n");
			return 0;
		}
	}
	return 1;
}

int f3()
{
	for (int i = 0; i < n; ++i)
	{
		for (int j = 1; j < n; ++j)
		{
			if (a[i][j] == a[j][i])
			{
				printf("具有对称性\n");
				return 1;
			}
			else if (a[i][j] != a[j][i])
			{
				printf("不具有对称性\n");
				return 0;
			}
			break;
		}
	}
	return 1;
}

int f4()
{
	for (int i = 0; i < n; ++i)
	{
		for (int j = 0; j < n; ++j)
		{
			for (int k = 0; k < n; ++k)
			{
				if (a[i][j] && a[j][k] && !a[i][k])
				{
					printf("不具有传递性\n");
					return 0;
				}
				else
				{
					printf("具有传递性\n");
					return 1;
				}
			}
		}
	}
	return 1;
}

int main()
{
	f1();
	if (f2() && f3() && f4())
	{
		printf("具有等价关系\n");
	}
	else
	{
		printf("不具有等价关系\n");
	}
	return 0;
}

N元关系

题目描述:

三、设N元关元系用r[N][N]表示,c[N][N]表示各个闭包,函数initc(r)表示将c[N][N]初始化为r[N][N]。

(1)自反闭包:

(2)对称闭包:

(3)传递闭包:,或用warshall方法。

方法1:,下面求得的关系矩阵T=就是。

方法2:warshall方法

代码:

#include <stdio.h>
#define ROW 4
#define COL 4
void warshall(int arr[ROW][COL],int row,int col)
{
	int i=0,j=0,k=0;
	for(i=0;i<row;i++)
	{
		for(j=0;j<col;j++)
		{
			if(arr[j][i]==1)
			{
			for(k=0;k<col;k++)
			{
				arr[k][k]=(arr[j][k]||arr[i][k]);
			}
		}
	}
}
}
void printf(int arr[ROW][COL],int row,int col)
{
	int i=0,j=0;
	for(i=0;i<row;i++)
	{
		for(j=0;j<col;j++)
		{
			printf("%d",arr[i][j]);
		}
		printf("\n");
	}
}
int main()
{
	int arr[ROW][COL]={{0,1,0,1},{0,1,1,0},{0,0,0,0},{1,0,1,0}};
	printf(arr,4,4);
	printf("\n");
	warshall(arr,4,4);
	printf(arr,4,4);
	return 0;
}
在C语言中,验证离散数学集合上的二元关系通常涉及定义结构体来表示集合元素及其相关的二元关系,并编写函数来检查特定性质,比如自反性、对称性、传递性和反对称性等。以下是一个简单的例子: 首先,我们创建一个结构体`Relation`来存储集合及其二元关系: ```c typedef struct { int size; int* elements; // 集合元素数组 int** relation; // 关系矩阵,0表示无关系,非0表示有关系 } RelationSet; ``` 然后,我们可以定义一些函数来检查关系的性质: ```c // 自反性检查 int is_reflexive(RelationSet* set) { for (int i = 0; i < set->size; i++) { if (!set->relation[i][i]) return 0; // 如果当前元素与自身没有关系,则不满足自反性 } return 1; } // 对称性检查 int is_symmetric(RelationSet* set) { for (int i = 0; i < set->size; i++) { for (int j = 0; j < set->size; j++) { if (set->relation[i][j] && !set->relation[j][i]) return 0; // 只有当两者互相关系且另一方不存在关系时才不满足对称性 } } return 1; } // 传递性检查 int is_transitive(RelationSet* set) { for (int i = 0; i < set->size; i++) { for (int j = 0; j < set->size; j++) { if (set->relation[i][j] && set->relation[j][k]) { if (!set->relation[i][k]) return 0; // 如果存在从i到j和j到k的关系,但不存在i到k,则不满足传递性 } } } return 1; } // 反对称性检查(仅适用于部分关系) int is_antisymmetric(RelationSet* set) { for (int i = 0; i < set->size; i++) { for (int j = 0; j < set->size; j++) { if (set->relation[i][j] && set->relation[j][i] && i != j) return 0; // 当两个不同元素间存在双向关系则不满足反对称性 } } return 1; } ``` 在实际应用中,需要先初始化`RelationSet`,然后调用上述函数判断关系是否具有特定性质。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海绵宝宝de派小星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值