Google Gemini Pro的使用感受及与GPT3.5的简单对比

Google Gemini 的发布消息已经席卷抖音、哔哩哔哩、知乎等各大主流平台。相信不少人都已经直接或间接的看到过Gemini的发布演示视频了,其强大的图片、视频处理能力让人叹为观止。但是笔者能力有限,只能在这里通过在一个对话框中的对话演示Gemini Pro与Chat GPT3.5(下文将用G与C代指),对于信息的处理能力。

我将使用分为了以下四个部分:代码编写、科学问答、人文问答、中英文翻译。并在使用时会与Chat GPT3.5做对照。这只是一个简单的小对比。

一、代码编写:

代码编写能力是聊天AI的核心功能之一,我通过向模型发出“写一个扫雷”获得代码。以下分别是C和G的回复:

 

这里是C的代码:

import random


def create_board(rows, cols, num_mines):
    # 初始化游戏板
    board = [[' ' for _ in range(cols)] for _ in range(rows)]

    # 随机放置地雷
    mines = random.sample(range(rows * cols), num_mines)
    for mine in mines:
        row, col = divmod(mine, cols)
        board[row][col] = 'X'

    return board


def print_board(board):
    for row in board:
        print(' '.join(row))


def count_adjacent_mines(board, row, col):
    # 计算周围地雷数量
    count = 0
    for i in range(max(0, row - 1), min(len(board), row + 2)):
        for j in range(max(0, col - 1), min(len(board[0]), col + 2)):
            if board[i][j] == 'X':
                count += 1
    return count


def main():
    rows = 5
    cols = 5
    num_mines = 5

    board = create_board(rows, cols, num_mines)

    while True:
        print_board(board)
        row = int(input('Enter row: '))
        col = int(input('Enter col: '))

        if board[row][col] == 'X':
            print('Game over! You hit a mine.')
            break
        else:
            mines = count_adjacent_mines(board, row, col)
            board[row][col] = str(mines) if mines > 0 else 'B'

        # 判断是否胜利
        uncovered_cells = sum(row.count(' ') for row in board)
        if uncovered_cells == num_mines:
            print('Congratulations! You won!')
            break


if __name__ == '__main__':
    main()

这里是G的代码:

import random

# 创建游戏地图
def create_map(size):
    # 创建一个二维数组
    map = []
    for i in range(size):
        row = []
        for j in range(size):
            row.append(0)
        map.append(row)

    # 随机放置地雷
    for i in range(size):
        for j in range(size):
            if random.random() < 0.1:
                map[i][j] = -1

    # 计算每个方格周围的地雷数
    for i in range(size):
        for j in range(size):
            if map[i][j] == -1:
                continue
            for di in range(-1, 2):
                for dj in range(-1, 2):
                    if 0 <= i + di < size and 0 <= j + dj < size and map[i + di][j + dj] != -1:
                        map[i + di][j + dj] += 1

    return map

# 打印游戏地图
def print_map(map):
    for row in map:
        for cell in row:
            if cell == -1:
                print('*', end=' ')
            elif cell == 0:
                print(' ', end=' ')
            else:
                print(cell, end=' ')
        print()

# 游戏主循环
def main():
    size = int(input('请输入游戏地图大小:'))
    map = create_map(size)

    while True:
        print_map(map)

        row = int(input('请输入要打开的方格的行号:'))
        col = int(input('请输入要打开的方格的列号:'))

        if map[row][col] == -1:
            print('游戏结束!')
            break
        elif map[row][col] == 0:
            # 打开周围所有方格
            for di in range(-1, 2):
                for dj in range(-1, 2):
                    if 0 <= row + di < size and 0 <= col + dj < size and map[row + di][col + dj] != -1:
                        map[row + di][col + dj] = 0

        # 检查是否所有方格都已打开
        if all(all(cell != -1 for cell in row) for row in map):
            print('游戏胜利!')
            break

if __name__ == '__main__':
    main()

 从代码的编写上来看,他们对“扫雷”程序的理解有一些分歧,但又都实现了扫雷的基本功能。就笔者个人而言,笔者喜欢C的判胜方式和G的游戏初始化设置。

二、科学问答:

接下来是一个简单的问题“你认为人类还会进化吗?”

C与G的回复如下:

 在这个问题上我们可以看到C与G的回复存在着明显的差别,其中C的回复没有直接回答“会”或“不会”,而是默认为“会”,其较全面,更接近自然人的语言,而G的回复则直接表明观点,再进行阐述,更具科学性。C给笔者的印象是一个普通人,而G则更像一名科学家。

三、人文问答:

在这个部分我用了情感这一元素提问,C与G的回复如下:

 

这一项目中二者大同小异,但C的建议比G要温和一些。

四、中英文翻译:

在这一项中我选择了特别具有代表性的诗歌翻译进行:泰戈尔《飞鸟集》第82首。

英文原文是:"Let life be beautiful like summer flowers And Death like autumn leaves." 。

郑振铎 译为“生如夏花之绚烂,死如秋叶之静美”。

以下是分别是C与G的回复:

 可以明显看出,在这个环节,G的回复要比C更让人满意,因为他更接近我们知道的翻译,更加优美(当然前提是Gemini Pro没有说谎)

以下是Google官方发布的测试对比表:

 在近期我可能会尝试使用Gemini Pro Vision的model,进行图片测试。大家如果有有趣的想法可以在评论区留言。

特别说明:这只是一时兴起进行的小对比,对比感受仅仅基于笔者的个人认知。

如有错误请斧正。

 

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值