一个项目由若干个任务组成,任务之间有先后依赖顺序。项目经理需要设置一系列里程碑,在每个里程碑节点处检查任务的完成情况,并启动后续的任务。现给定一个项目中各个任务之间的关系,请你计算出这个项目的最早完工时间。
输入格式:
首先第一行给出两个正整数:项目里程碑的数量 N(≤100)和任务总数 M。这里的里程碑从 0 到 N−1 编号。随后 M 行,每行给出一项任务的描述,格式为“任务起始里程碑 任务结束里程碑 工作时长”,三个数字均为非负整数,以空格分隔。
输出格式:
如果整个项目的安排是合理可行的,在一行中输出最早完工时间;否则输出"Impossible"。
输入样例 1:
9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4
输出样例 1:
18
输入样例 2:
4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5
输出样例 2:
Impossible
可以使用拓扑排序
#include<iostream>
#include<stack>
#include<algorithm>
using namespace std;
//定义图结构体
struct vertex
{
int indgree;
int data,weight;
vertex* next;
};
struct {
vertex vertices[105];
int numv, nume;
}G;
//IN用来存0入度节点,TOPO是拓扑排序
stack<int> IN,TOPO;
//ve存最早开始时间,vl最迟开始时间
int ve[105],vl[105];
//初始化邻接矩阵,邻接矩阵第一列的indegree存对应节点的入度
void InitGraph()
{
while (G.nume--)
{
int x;
cin >> x;
vertex* v = new vertex;
cin>>v->data>>v->weight;
v->next = G.vertices[x].next;
G.vertices[x].next = v;
G.vertices[v->data].indgree++;
}
}
//将入度为0的节点放入IN
void Init_inDegree()
{
for (int i = 0; i <G.numv; ++i)
{
//cout<<G.vertices[i].indgree<<" ";
if (G.vertices[i].indgree == 0) { IN.push(i); }
}
}
//进行拓扑排序,从IN中pop一个入度为0的节点,放入TOPO中,并且将他指向节点的入度全都-1,如果有入度为1的节点再次放入IN中。
void Topology()
{
while (!IN.empty())
{
int x = IN.top();
IN.pop();
TOPO.push(x);
count++;
for (vertex* head = G.vertices[x].next; head!= NULL; head = head->next)
{
if (--G.vertices[head->data].indgree == 0) { IN.push(head->data); }
//求ve,最晚开始时间是到该节点路径最大值。if(上一个节点的最晚时间+到下一个节点的时间)>(下一个节点的最晚时间)那么就要改变。(遍历每个节点,看看与他相关的节点是否会因为他最晚时间会改变)
if(ve[x]+head->weight>ve[head->data])
{
ve[head->data] = ve[x] + head->weight;
}
}
}
}
int main()
{
int count = 0;
cin >> G.numv >> G.nume;
InitGraph();
Init_inDegree();
Topology();
//这里需要一个sort排序,因为可能有的节点没有出度,但是他不是关键路径上的,经过拓扑排序,也可能是最后一个元素,所以不能直接输出TOPO的最后一个元素的ve
sort(ve,ve+G.numv);
如果TOPOsize==G.numv说明图上的节点都通过拓扑排序了,也就是有向无环图。
if (TOPO.size() == G.numv)cout << ve[G.numv-1];
else cout << "Impossible";
}