一、基本概念
⛺️欧拉路径(Eulerian Path)
在一个图中,经过图中每一条边且每一条边只经过一次的路径称为欧拉路径。
⛪️欧拉回路(Eulerian Circuit)
如果欧拉路径的起点和终点是同一个顶点,则称为欧拉回路。
二、判定条件
🍓2.1无向图中的欧拉回路
一个无向图存在欧拉回路,当且仅当:①图是连通的(不考虑度为0的孤立顶点)
②图中所有顶点的度数都是偶数
🫐2.2无向图中的欧拉路径(非回路)
一个无向图存在欧拉路径但不存在欧拉回路,当且仅当:①图是连通的
②图中恰好有两个顶点的度数是奇数(这两个顶点就是路径的起点和终点)
🥝2.3有向图中的欧拉回路
一个有向图存在欧拉回路,当且仅当:①图是强连通的(从任一顶点可以到达其他所有顶点)
②每个顶点的入度等于出度
🍅2.4有向图中的欧拉路径(非回路)
一个有向图存在欧拉路径但不存在欧拉回路,当且仅当:①图是弱连通的(不考虑边的方向时是连通的)
②恰好有一个顶点的出度比入度大1(起点)
③恰好有一个顶点的入度比出度大1(终点)
④其他所有顶点的入度等于出度
三、寻找欧拉回路的算法(Hierholzer算法)
步骤如下:
①选择起点:对于欧拉回路,可以选择任意顶点;对于欧拉路径,必须选择奇数度顶点(无向图)或出度比入度大1的顶点(有向图)
②深度优先遍历:从起点出发进行深度优先遍历,直到无法继续前进(即当前顶点的所有边都已被访问)
③构建回路:在无法继续前进时,将当前顶点加入回路中,并回溯到上一个顶点
④插入子回路:如果在回溯过程中发现有顶点还有未访问的边,则从该顶点开始新的遍历,将找到的子回路插入主回路中
⑤重复:直到所有边都被访问
四、相关概念扩展
🍞中国邮路问题:如果图中不存在欧拉回路,如何找到最短的覆盖所有边的闭合路径(允许重复边)
🥐哈密尔顿回路:经过每个顶点恰好一次的回路,与欧拉回路(经过每条边恰好一次)形成对比
🥖半欧拉图:存在欧拉路径但不一定存在欧拉回路的图
五、典型例题
【问题描述】
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
【输入形式】
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结束。
【输出形式】
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
【样例输入】
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
【样例输出】
1
0
#include<bits/stdc++.h> // 包含常用头文件
#define inf 0xffffff // 定义无穷大常量
#define maxn 110000 // 定义最大顶点数
#include<queue> // 包含队列头文件
using namespace std;
int pre[1100], d[1100]; // pre数组用于并查集,d数组记录每个顶点的度数
int m, n; // m-边数,n-顶点数
// 初始化函数
void init()
{
for(int i = 1; i <= n; i++)
pre[i] = i; // 初始化并查集,每个顶点是自己的父节点
memset(d, 0, sizeof(d)); // 初始化度数数组为0
}
// 并查集查找函数(带路径压缩)
int find(int x)
{
if(pre[x] == x) // 如果x是自己的父节点
return x;
return find(pre[x]); // 递归查找父节点
}
// 并查集合并函数
void join(int x, int y)
{
int fx = find(x); // 找到x的根节点
int fy = find(y); // 找到y的根节点
if(fx != fy) // 如果不在同一集合
pre[x] = fy; // 合并集合(这里可能有优化空间,应该pre[fx]=fy)
}
int main()
{
int i, a, b;
while(scanf("%d", &n), n) // 输入顶点数n,n为0时结束
{
int ans = 0, cnt = 0, flag = 1; // ans-连通分量数,cnt-奇数度顶点数,flag-是否有欧拉回路标志
init(); // 初始化
scanf("%d", &m); // 输入边数m
for(i = 0; i < m; i++)
{
scanf("%d%d", &a, &b); // 输入每条边的两个顶点
d[a]++; // a顶点度数+1
d[b]++; // b顶点度数+1
join(a, b); // 合并a和b所在集合
}
// 检查图的连通性
for(i = 1; i <= n; i++)
{
if(pre[i] == i) // 统计根节点数量(连通分量数)
ans++;
if(ans > 1) // 如果连通分量数大于1,图不连通
{
flag = 0;
break;
}
}
// 检查每个顶点的度数是否为偶数
for(i = 1; i <= n; i++)
{
if(d[i] % 2 != 0) // 如果顶点度数为奇数
cnt++;
if(cnt > 0) // 只要有一个奇数度顶点,就不满足欧拉回路条件
{
flag = 0;
break;
}
}
// 输出结果
if(flag) // 满足欧拉回路条件
printf("1\n");
else // 不满足欧拉回路条件
printf("0\n");
}
return 0;
}