弗洛伊德算法Floyd

一.基本思想

🧇弗洛伊德算法是一种用于解决​​所有顶点对最短路径问题​​的动态规划算法,可以计算有向图或负权图(但不能有负权回路)中所有顶点之间的最短路径。

🧀弗洛伊德算法的核心思想是​​动态规划​​,通过逐步考虑中间顶点来优化路径:

1)对于图中的每一对顶点 (i, j),考虑所有可能的中间顶点 k

2)检查是否存在从 i 到 j 的路径经过 k 比已知路径更短

3)如果是,则更新 i 到 j 的最短距离

二、算法特点 

🍫时间复杂度​​:O(n³),其中 n 是顶点数

​​🍬空间复杂度​​:O(n²)

🍭可以处理​​负权边​​(但不能有负权回路)

🍮能够检测图中是否存在​​负权回路​​

🍯同时计算​​所有顶点对​​的最短路径

三、算法步骤

🍀1.初始化距离矩阵 D,其中 D[i][j] 表示顶点 i 到 j 的直接距离

1)如果 i == j,D[i][j] = 0

2)如果 i 和 j 之间有边,D[i][j] = 边权

3)否则 D[i][j] = ∞

🍂2.对于每个中间顶点 k(从 1 到 n):

1)对于每对顶点 i 和 j:

2)如果 D[i][k] + D[k][j] < D[i][j]

3)则更新 D[i][j] = D[i][k] + D[k][j]

🍁3.最终 D 矩阵存储了所有顶点对的最短距离 

四、典型例题

【问题描述】

对于下面一张若干个城市,以及城市之间距离的地图,请采用弗洛伊德算法求出所有城市之间的最短路径。

【输入形式】

顶点个数n,以及n*n的邻接矩阵,其中不可达使用9999代替

【输出形式】

每两个顶点之间的最短路径和经过的顶点

注意:顶点自身到自身的dist值为0,path则为该顶点的编号

【样例输入】

4

9999 4 11 9999

6 9999 2 9999

1 9999 9999 1

9999 3 9999 9999

【样例输出】

from 0 to 0: dist = 0 path:0

from 0 to 1: dist = 4 path:0 1

from 0 to 2: dist = 6 path:0 1 2

from 0 to 3: dist = 7 path:0 1 2 3

from 1 to 0: dist = 3 path:1 2 0

from 1 to 1: dist = 0 path:1

from 1 to 2: dist = 2 path:1 2

from 1 to 3: dist = 3 path:1 2 3

from 2 to 0: dist = 1 path:2 0

from 2 to 1: dist = 4 path:2 3 1

from 2 to 2: dist = 0 path:2

from 2 to 3: dist = 1 path:2 3

from 3 to 0: dist = 6 path:3 1 2 0

from 3 to 1: dist = 3 path:3 1

from 3 to 2: dist = 5 path:3 1 2

from 3 to 3: dist = 0 path:3

#include<bits/stdc++.h>
using namespace std;
#define max 9999  // 定义无穷大值,表示不可达

int path[100][100];  // 路径矩阵,记录i到j的最短路径中j的前驱节点
int dist[100][100];  // 距离矩阵,记录i到j的最短距离

// 定义图结构
typedef struct graph
{
    int arc[100][100];  // 邻接矩阵存储图的边权
    int vexnum;         // 顶点数量
}Graph;

// 弗洛伊德算法主函数
void floyd(Graph g, int n)
{
    // 三重循环:k是中间节点,i是起点,j是终点
    for(int k=0; k<n; k++)       // 逐步考虑每个顶点作为中间顶点
    {
        for(int i=0; i<n; i++)    // 遍历所有起点
        {
            for(int j=0; j<n; j++) // 遍历所有终点
            {
                // 如果通过k节点能使i到j的路径更短
                if(dist[i][k] + dist[k][j] < g.arc[i][j])
                {
                    g.arc[i][j] = dist[i][k] + dist[k][j];  // 更新边权
                    dist[i][j] = g.arc[i][j];                // 更新最短距离
                    path[i][j] = k;                          // 记录中间节点
                }
            }
        }
    }
    
    // 输出所有顶点对的最短路径信息
    for(int i=0; i<n; i++)
    {
        for(int j=0; j<n; j++)
        {
            cout << "from " << i << " to " << j << ": dist = " << g.arc[i][j] << " path:";
            int c = j;  // 当前节点
            int p[100]; // 存储路径节点
            p[0] = j;   // 终点
            int x = 0;  // 路径节点计数器
            
            if(i == j)  // 起点和终点相同
                cout << i << endl;
            else
            {
                // 回溯路径:从终点反向查找前驱节点直到起点
                while(path[i][c] != i)
                {
                    p[++x] = path[i][c];  // 记录前驱节点
                    c = path[i][c];       // 移动到前驱节点
                }
                p[++x] = i;  // 添加起点
                
                // 反向输出路径(从起点到终点)
                for(; x>=0; x--)
                    cout << p[x] << ' ';
                cout << endl;
            }
        }
    }
}

int main()
{
    int n;  // 顶点数量
    cin >> n;
    
    Graph g;
    g.vexnum = n;  // 设置顶点数
    
    // 输入邻接矩阵
    for(int i=0; i<n; i++)
    {
        for(int j=0; j<n; j++)
        {
            cin >> g.arc[i][j];  // 输入边权
            
            if(i == j)  // 对角线元素设为0(自己到自己的距离)
                g.arc[i][j] = 0;
                
            dist[i][j] = g.arc[i][j];  // 初始化距离矩阵
            
            // 初始化路径矩阵
            if(i == j || g.arc[i][j] == max)  // 自己到自己的路径或无直接连接
            {
                path[i][j] = i;  // 前驱设为自身
            }
            else
                path[i][j] = i;  // 有直接连接时前驱设为起点
        }
    }
    
    floyd(g, n);  // 执行弗洛伊德算法
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小瑾比个耶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值