1315:【例4.5】集合的划分
时间限制: 1000 ms 内存限制: 65536 KB
提交数:31109 通过数: 15835
【题目描述】
设S是一个具有n个元素的集合,S=〈a1,a2,……,an〉,现将S划分成k个满足下列条件的子集合S1,S2,……,Sk ,且满足:
1.Si≠∅𝑆𝑖≠∅
2.Si∩Sj=∅ (1≤i,j≤k,i≠j)
3.S1∪S2∪S3∪…∪Sk=S
则称S1,S2,……,Sk,……,𝑆𝑘是集合S的一个划分。它相当于把S集合中的n个元素a1,a2,……,an 放入k𝑘个(0<k≤n<30)无标号的盒子中,使得没有一个盒子为空。请你确定n个元素a1,a2,……,an放入k个无标号盒子中去的划分数S(n,k)。
【输入】
给出n和k。
【输出】
n个元素a1,a2,……,an放入k个无标号盒子中去的划分数S(n,k)。
【输入样例】
10 6
【输出样例】
22827
【原题链接】信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)
分析:把n个数划分为k个,其实不就相当于把n个苹果放到k个盘子里,这道题其实类似于放苹果那道题,不同的是,放苹果那道题盘子数(n)可以大于苹果数(m),而这道题题中的条件(k<=n),即不需要考虑k>n的情况,除外,放苹果中5,1,1和1,5,1 是同一种分法,这里由于集合中的元素是不同的,所以可以从n-1递归找出所有的方案数。
k=n || k=1
转换为放苹果的思想,即把n个苹果放到k个盘子里,相同的苹果,相同的盘子,是不是就只有一种方案数,所以return 1。
s(n - 1, k - 1)
一个苹果占了一个盘子,没空的情况。
s(n-1,k)
空一个盘子的情况,跟其他苹果共用一个盘子了。
#include <iostream>
using namespace std;
long long s(int n, int k) //int可能会越界,请用高精度计算。
{
if (k > n || k == 0)return 0; //满足边界条件,退出。
if (k == n || k == 1)return 1;
return s(n - 1, k - 1) + k * s(n - 1, k); //调用下一层递归。
}
int main()
{
int n, k;
cin >> n >> k;
cout << s(n, k);
return 0;
}