【信息奥赛题解】集合的划分(详细分析题解 & C++ 代码)

1315:【例4.5】集合的划分


时间限制: 1000 ms         内存限制: 65536 KB
提交数:31109    通过数: 15835

【题目描述】

设S是一个具有n个元素的集合,S=〈a1,a2,……,an〉,现将S划分成k个满足下列条件的子集合S1,S2,……,Sk ,且满足:

1.Si≠∅𝑆𝑖≠∅

2.Si∩Sj=∅          (1≤i,j≤k,i≠j)

3.S1∪S2∪S3∪…∪Sk=S

则称S1,S2,……,Sk,……,𝑆𝑘是集合S的一个划分。它相当于把S集合中的n个元素a1,a2,……,an 放入k𝑘个(0<k≤n<30)无标号的盒子中,使得没有一个盒子为空。请你确定n个元素a1,a2,……,an放入k个无标号盒子中去的划分数S(n,k)。

【输入】

给出n和k。

【输出】

n个元素a1,a2,……,an放入k个无标号盒子中去的划分数S(n,k)。

【输入样例】

10 6

【输出样例】

22827

【原题链接】信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)

 分析:把n个数划分为k个,其实不就相当于把n个苹果放到k个盘子里,这道题其实类似于放苹果那道题,不同的是,放苹果那道题盘子数(n)可以大于苹果数(m),而这道题题中的条件(k<=n),即不需要考虑k>n的情况,除外,放苹果中5,1,1和1,5,1 是同一种分法,这里由于集合中的元素是不同的,所以可以从n-1递归找出所有的方案数。

k=n || k=1

转换为放苹果的思想,即把n个苹果放到k个盘子里,相同的苹果,相同的盘子,是不是就只有一种方案数,所以return 1。

s(n - 1, k - 1)

一个苹果占了一个盘子,没空的情况。 

s(n-1,k)

空一个盘子的情况,跟其他苹果共用一个盘子了。 

#include <iostream>
using namespace std;
long long s(int n, int k)   //int可能会越界,请用高精度计算。
{
    if (k > n || k == 0)return 0;   //满足边界条件,退出。
    if (k == n || k == 1)return 1;
    return s(n - 1, k - 1) + k * s(n - 1, k);   //调用下一层递归。
}
int main()
{
    int n, k;
    cin >> n >> k;
    cout << s(n, k);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值