分享晚上如何进行复习总结

作为一名正在学习前端的学生,每天晚上复习总结知识是非常重要的,这不仅能帮助你巩固当天所学的内容,还能为后续的学习打下坚实的基础。以下是一些具体的建议,帮助你高效地复习总结:

11.简单来说(总结)

  1. 先浏览一下当天所学内容(笔记结合代码示例)

  2. 看着思维导图,进行检验,知识是否掌握

  3. 让ai给你出一些测试题,进行练习

  4. 将自己所写代码发给ai,让它帮助你审查代码,指出潜在的问题,并提供优化建议

  5. 写每日总结记录当天的收获、困惑和感悟。反思不足

  6. 休息放松,准备睡觉

1. 回顾当天的学习内容

快速浏览当天的笔记/文档/教程,进行简单记忆,加深印象

2. 根据思维导图复习知识点

  • 学习过程中就应该将当天的学习内容整理成结构化的笔记,比如用思维导图、表格或大纲的形式。不用很详尽,简要大纲即可,主要用于复习,查漏补缺

  • 也可以将笔记发给AI,让AI生成知识大纲,看着大纲回忆当天所学内容

  • 看着大纲,每一个要点,要能说出来个一二三,说不出来,就再次返回去看知识点

  • 有不清楚的地方,就问ai,或者看菜鸟教程/csdn/知乎

  • 看完后笔记记录下来,方便 以后查看

3. 动手实践

  • 重新写代码:尝试重新实现当天学习的代码示例,不必完全一样,实现功能即可

  • 优化代码:写完代码,可以尝试优化它,看看是否能用更简洁的方式实现。

  • 测试练习:让AI根据你学习的内容生成测验题目,通过做题来检验自己对知识点的掌握程度

  • 代码审查与优化:将自己写的前端代码上传给AI,它可以帮助你审查代码,指出潜在的问题,并提供优化建议,从而提升你的编程能力。

4. 记录学习心得

  • 写每日总结:每天花几分钟写一段学习心得,记录当天的收获、困惑和感悟。

  • 反思不足:思考自己在学习过程中有哪些不足,比如是否花太多时间在某个知识点上,或者是否忽略了某些重要的内容。

  • 制定计划:根据当天的学习情况,为第二天的学习制定一个简单的计划,明确学习目标。

5. 利用工具辅助复习

  • 在线笔记工具:使用工具如 Notion、Obsidian ,Typora或印象笔记,整理和存储学习资料。

  • 代码片段管理工具:用工具如 VS Code 的代码片段功能,保存常用的代码模板。

  • 记忆卡片工具:用 Anki 或 Notion 制作记忆卡片,帮助记忆重要的知识点。

6. 与其他学习者交流

  • 加入学习社区:比如前端开发者论坛、GitHub、知乎等,与其他学习者交流心得。

  • 讨论问题:如果有不理解的地方,可以在社区中提问,或者和同学、朋友讨论。

7. 休息与放松

  • 适当休息:复习总结后,给自己一些时间放松,比如听音乐、散步或看一会儿娱乐内容,避免过度疲劳。

  • 保持良好的作息:保证充足的睡眠,让大脑有时间整理和巩固当天的学习内容。

示例复习流程

  1. 7:00 - 7:30:快速浏览当天的笔记,回顾学习内容。

  2. 7:30 - 8:00:重新写代码,实践当天学习的知识点。

  3. 8:00 - 8:30:整理笔记,标记难点,记录问题和解决方案。

  4. 8:30 - 9:00:写学习日志,总结当天的收获和明天的计划。

  5. 9:00 - 9:30:休息放松,准备睡觉。

通过这样的复习总结,你可以更高效地掌握前端知识,逐步建立起自己的知识体系。坚持下去,你会发现自己在前端学习上会有很大的进步!

基于机器学习的音频情感分析系统Python源码(高分项目),能够从语音中识别出四种基本情感:愤怒、快乐、中性和悲伤。个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统Python源码(高分项目)基于机器学习的音频情感分析系统P
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值