初学双端队列

文章讲述了作者在实现滑动窗口求最大最小值问题时遇到的时间超限(TLE)问题。通过对比朴素方法和使用双端队列(deque)的解决方案,作者指出双端队列能更有效地处理数据,降低时间复杂度,从而提高算法效率。最终,作者提供了使用双端队列的优化代码示例。
摘要由CSDN通过智能技术生成

今天做了一道滑动窗口,感触很多,原本用最为朴素的方式写出来,但是在vjudege上面7发TLE。我人都傻了,后面我到洛谷找题,一发就过了。然后没办法,就把双端队列给学了。

这是题目:

 题意很明确,在窗口找最大最小值。

这个是我7发没过的代码

const int inf = 0x3f3f3f3f;
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 1000000
int counter[MAX] = { 0 };
int Max[MAX] = { 0 };
int a = 0, b = 0;
int temp1 = 0;
int temp2 = 0;

void com(int n[], int head, int end)
{
	int mi = inf;
	int ma = -inf;
	if (temp1 != 0 && temp2 != 0)
	{
		if (temp1 < head)
			temp1 = 0;
		else
		{
			if (n[temp1] > n[end])
			{
				mi = n[end];
				temp1 = end;
			}
			else
			{
				mi = n[temp1];
			}
		}

		if (temp2 < head)
			temp2 = 0;
		else
		{
			if (n[temp2] < n[end])
			{
				ma = n[end];
				temp2 = end;
			}
			else
			{
				ma = n[temp2];
			}

		}
	}
	if(temp1==0||temp2==0)
	{
		for (int i = head; i <= end; i++)
		{
			if (mi > n[i])
			{
				mi = n[i];
				temp1 = i;
			}
			if (ma < n[i])
			{
				ma = n[i];
				temp2 = i;
			}
		}
	}

	
	cout << mi << " ";
	Max[b] = ma;
	b++;
}
int main()
{
	int n, k;
	cin >> n >> k;
	for (int i = 0; i < n; i++)
	{
		//scanf("%d", &counter[i]);
		cin>>counter[i];
		if (n - k > 0 && i - k >= -1)
		{
			com(counter, i - k + 1, i);
		}
	}
	if(n - k <= 0)
	{
		com(counter, 0, n - 1);
	}
	cout << endl;

	for (int i = 0; i < b; i++)
	{
		cout << Max[i] << " ";
	}

	return 0;
}

scanf 读取数据的速度比 cin要快!!!!

但是,在vjudge会TLE的!!!上面的代码最主要的缺点是,寻找最大最小值时,很容易把那些没用的数据多次遍历,导致时间复杂度上去了。因此,我们利用双端队列来解决,会快很多

//解释变量:
//1.arr[]是Window position 的数据
//2.n是数据总数
//3.k是滑动窗口的窗口长度
//这里要用到头文件<deque>

//代码函数展示:

void sq(int arr[],int n,int k)
{
    deque<int>max_queue;
    for(int i=0;i<n;i++)
    {
        while(!max_queue.empty() && max_queue.front<i-k+1)
                max_queue.pop_front();//将队头不在串口里面的元素出队列
        while(!max_queue.empty() && arr[max_queue.back()]<arr[i])
                max-queue.pop_back();
        //后面的数据时效性更高,如果比原队尾大,那就不是满足条件的出队列
        max_queue.push_back(i);//将满足的入队
        if(i>=k-1)
            cout<<arr[max_queue.front]<<" ";
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值