LC 2171. 拿出最少数目的魔法豆

文章讨论了一个关于正整数数组的魔法豆分配问题,目标是找到最少数量的魔法豆,使得剩余非空袋子中魔法豆数量相等。通过设置分界点、排序和计算前缀和的方式,优化了暴力解决方法的时间复杂度至O(nlogn)。
摘要由CSDN通过智能技术生成

2171. 拿出最少数目的魔法豆

难度: 中等

题目大意:

给定一个 正整数 数组 beans ,其中每个整数表示一个袋子里装的魔法豆的数目。

请你从每个袋子中 拿出 一些豆子(也可以 不拿出),使得剩下的 非空 袋子中(即 至少还有一颗 魔法豆的袋子)魔法豆的数目 相等。一旦把魔法豆从袋子中取出,你不能再将它放到任何袋子中。

请返回你需要拿出魔法豆的 最少数目

提示:

  • 1 <= beans.length <= 10^5
  • 1 <= beans[i] <= 10^5

示例 1:

输入:beans = [4,1,6,5]
输出:4
解释:
- 我们从有 1 个魔法豆的袋子中拿出 1 颗魔法豆。
  剩下袋子中魔法豆的数目为:[4,0,6,5]
- 然后我们从有 6 个魔法豆的袋子中拿出 2 个魔法豆。
  剩下袋子中魔法豆的数目为:[4,0,4,5]
- 然后我们从有 5 个魔法豆的袋子中拿出 1 个魔法豆。
  剩下袋子中魔法豆的数目为:[4,0,4,4]
总共拿出了 1 + 2 + 1 = 4 个魔法豆,剩下非空袋子中魔法豆的数目相等。
没有比取出 4 个魔法豆更少的方案。

分析

首先要假设一个分界点假设是x,那么如果beans中的某个数小于x,那么只能把这个袋子中的豆子全部拿走,如果大于x那么就要把多余的部分拿走,那么这个分界点怎么取呢,我们可以以数组中数作为分界点,如果不这么取,可以证明肯定不是最优解,这样的话,暴力就可以解决了,但是暴力的时间复杂度是 O ( n 2 ) O(n^2) O(n2),肯定是会超时的,那么考虑优化,因为我们是用数组的数x当作分界点,也就是说和数组中的数字的顺序没有关系,然后我们把小于x的数全部清零,大于x的全部收缩到x,也就是说我们可以排个序,让所有小于x的都在左边,大于x的都在右边,做一个前缀和,把要留在袋子中的数字减去就是要取出的豆子的数量,排序的时间复杂度是 n l o g n nlogn nlogn,这样就可以过了, 代码实现如下

暴力 (会超时)

class Solution {
public:
    using LL = long long;
    long long minimumRemoval(vector<int>& beans) {
        int n = beans.size();
        LL res = INT64_MAX;
        for (int i = 0; i < n; i ++) {
            LL t = 0;
            for (int j = 0; j < n; j ++) {
                if (i == j) continue;
                t += beans[j] >= beans[i] ? beans[j] - beans[i] : beans[j];
            }
            res = min(res, t);
        }
        return res;
    }
};

时间复杂度: O ( n 2 ) O(n^2) O(n2)

排序 + 前缀和 + 枚举

class Solution {
public:
    using LL = long long;
    long long minimumRemoval(vector<int>& beans) {
        int n = beans.size();
        sort(beans.begin(), beans.end());
        LL sum = accumulate(beans.begin(), beans.end(), 0LL);
        LL res = sum;
        for (int i = 0; i < n; i ++) {
            LL t = sum - (LL)(n - i) * beans[i];
            res = min(res, t);
        }
        return res;
    }
};

时间复杂度 : O ( n l o g n ) O(nlogn) O(nlogn)

  • accumulate(begin, end, init_val), begin是起始点,end是终点,init_val是起始值,返回值是这一段区间的和加上init_val

结束了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值