2171. 拿出最少数目的魔法豆
难度: 中等
题目大意:
给定一个 正整数 数组
beans
,其中每个整数表示一个袋子里装的魔法豆的数目。请你从每个袋子中 拿出 一些豆子(也可以 不拿出),使得剩下的 非空 袋子中(即 至少还有一颗 魔法豆的袋子)魔法豆的数目 相等。一旦把魔法豆从袋子中取出,你不能再将它放到任何袋子中。
请返回你需要拿出魔法豆的 最少数目。
提示:
1 <= beans.length <= 10^5
1 <= beans[i] <= 10^5
示例 1:
输入:beans = [4,1,6,5]
输出:4
解释:
- 我们从有 1 个魔法豆的袋子中拿出 1 颗魔法豆。
剩下袋子中魔法豆的数目为:[4,0,6,5]
- 然后我们从有 6 个魔法豆的袋子中拿出 2 个魔法豆。
剩下袋子中魔法豆的数目为:[4,0,4,5]
- 然后我们从有 5 个魔法豆的袋子中拿出 1 个魔法豆。
剩下袋子中魔法豆的数目为:[4,0,4,4]
总共拿出了 1 + 2 + 1 = 4 个魔法豆,剩下非空袋子中魔法豆的数目相等。
没有比取出 4 个魔法豆更少的方案。
分析
首先要假设一个分界点假设是x
,那么如果beans
中的某个数小于x
,那么只能把这个袋子中的豆子全部拿走,如果大于x
那么就要把多余的部分拿走,那么这个分界点怎么取呢,我们可以以数组中数作为分界点,如果不这么取,可以证明肯定不是最优解,这样的话,暴力就可以解决了,但是暴力的时间复杂度是
O
(
n
2
)
O(n^2)
O(n2),肯定是会超时的,那么考虑优化,因为我们是用数组的数x
当作分界点,也就是说和数组中的数字的顺序没有关系,然后我们把小于x
的数全部清零,大于x
的全部收缩到x
,也就是说我们可以排个序,让所有小于x
的都在左边,大于x
的都在右边,做一个前缀和,把要留在袋子中的数字减去就是要取出的豆子的数量,排序的时间复杂度是
n
l
o
g
n
nlogn
nlogn,这样就可以过了, 代码实现如下
暴力 (会超时)
class Solution {
public:
using LL = long long;
long long minimumRemoval(vector<int>& beans) {
int n = beans.size();
LL res = INT64_MAX;
for (int i = 0; i < n; i ++) {
LL t = 0;
for (int j = 0; j < n; j ++) {
if (i == j) continue;
t += beans[j] >= beans[i] ? beans[j] - beans[i] : beans[j];
}
res = min(res, t);
}
return res;
}
};
时间复杂度: O ( n 2 ) O(n^2) O(n2)
排序 + 前缀和 + 枚举
class Solution {
public:
using LL = long long;
long long minimumRemoval(vector<int>& beans) {
int n = beans.size();
sort(beans.begin(), beans.end());
LL sum = accumulate(beans.begin(), beans.end(), 0LL);
LL res = sum;
for (int i = 0; i < n; i ++) {
LL t = sum - (LL)(n - i) * beans[i];
res = min(res, t);
}
return res;
}
};
时间复杂度 : O ( n l o g n ) O(nlogn) O(nlogn)
- accumulate(begin, end, init_val), begin是起始点,end是终点,init_val是起始值,返回值是这一段区间的和加上init_val
结束了