2580. 统计将重叠区间合并成组的方案数
难度: 中等
题目描述:
给你一个二维整数数组
ranges
,其中ranges[i] = [starti, endi]
表示starti
到endi
之间(包括二者)的所有整数都包含在第i
个区间中。你需要将
ranges
分成 两个 组(可以为空),满足:
- 每个区间只属于一个组。
- 两个有 交集 的区间必须在 同一个 组内。
如果两个区间有至少 一个 公共整数,那么这两个区间是 有交集 的。
- 比方说,区间
[1, 3]
和[2, 5]
有交集,因为2
和3
在两个区间中都被包含。请你返回将
ranges
划分成两个组的 总方案数 。由于答案可能很大,将它对109 + 7
取余 后返回。提示:
1 <= ranges.length <= 10^5
ranges[i].length == 2
0 <= starti <= endi <= 10^9
示例:
输入:ranges = [[1,3],[10,20],[2,5],[4,8]] 输出:4 解释: 区间 [1,3] 和 [2,5] 有交集,所以它们必须在同一个组中。 同理,区间 [2,5] 和 [4,8] 也有交集,所以它们也必须在同一个组中。 所以总共有 4 种分组方案: - 所有区间都在第 1 组。 - 所有区间都在第 2 组。 - 区间 [1,3] ,[2,5] 和 [4,8] 在第 1 个组中,[10,20] 在第 2 个组中。 - 区间 [1,3] ,[2,5] 和 [4,8] 在第 2 个组中,[10,20] 在第 1 个组中。
分析
首先看数据范围,时间复杂度要控制在 O ( n l o g n ) O(nlogn) O(nlogn)内,根据题目描述,有交集的区间必须放在同一个组别内,所以首先我们要将所有有交集的区间进行合并,合并完成之后,要将所有剩下的区间分到两个组里面去,那么对于每一个组,一共是有两种情况,要不就是在组别1,要不就是在组别2,所以说我们只要找到一个组,就把答案乘以2就行。
现在的问题就是怎么合并区间呢, 这是一个非常经典的问题,我们首先对区间的左端点进行排序,记录一个右端点right
,然后从左往右依次枚举,设当前枚举的左端点是l
,右端点是r
,那么如果l > right
,那么说明这两个区间是没有交集的,然后每次更新right
即right = max(right, r)
这样就可以把区间分离了
代码实现
class Solution {
public:
const int MOD = 1e9 + 7;
using LL = long long;
int countWays(vector<vector<int>>& ranges) {
int n = ranges.size();
sort(ranges.begin(), ranges.end(), [&](vector<int>& a, vector<int>& b) {
return a[0] < b[0];
});
int res = 1, right = -1;
for (int i = 0; i < n; i ++) {
int l = ranges[i][0], r = ranges[i][1];
if (l > right) {
res = res * 2 % MOD;
}
right = max(right, r);
}
return res;
}
};
时间复杂度 : O ( n l o g n ) O(nlogn) O(nlogn)