数据分析案例

### 1. 环境准备
```python
# 安装必要库
!pip install pandas matplotlib jieba wordcloud pyecharts networkx pillow tencentcloud-sdk-python
```

---

### 2. 数据读取与预处理
```python
import pandas as pd

# 读取数据(假设为Excel文件)
df = pd.read_excel("学生信息表.xlsx", engine='openpyxl')

# 查看数据结构
print(df.head())
print(df.info())

# 示例预处理(根据实际数据调整)
df['省份'] = df['省份'].str.replace('省', '').replace('市', '')  # 标准化省份名称
```

---

### 3. 性别分布饼图
```python
import matplotlib.pyplot as plt

gender_counts = df['性别'].value_counts()
plt.pie(gender_counts, labels=gender_counts.index, autopct='%1.1f%%')
plt.title("Gender Distribution")
plt.show()
```

---

### 4. 省份分布地图(使用pyecharts)
```python
from pyecharts import options as opts
from pyecharts.charts import Map

province_counts = df['省份'].value_counts().to_dict()

c = (
    Map()
    .add("学生数量", list(province_counts.items()), "china")
    .set_global_opts(title_opts=opts.TitleOpts(title="Province Distribution"))
c.render("province_map.html")  # 生成交互式HTML文件
```

---

### 5. 城市分布柱状图
```python
city_counts = df['城市'].value_counts().head(10)  # 取前10个城市

plt.bar(city_counts.index, city_counts.values)
plt.xticks(rotation=45)
plt.title("Top 10 Cities")
plt.show()
```

---

### 6. 签名词云
```python
from wordcloud import WordCloud
import jieba

text = ' '.join(df['签名'].dropna())
words = ' '.join(jieba.cut(text

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值