牛客暑假训练营1 B.A Bit More Common

原题链接:B-A Bit More Common

题意:同A题,但是这题要求序列存在至少二个子序列的AND和为1。

自用学习

思路:A题中求出的答案是只要包含一个子序列就可以的总和,自然也包含存在至少二个的子序列,所以可以用A题求出的答案来减去只包含一个子序列的数量。

和第一题一样n个位置可以选择k个奇数,所以有k个奇数的情况下有什么情况呢?

首先因为n个位置放k个奇数所以答案肯定是需要乘C\binom{k}{n}

然后对于n-k个偶数,它们的二进制除了末尾的0都是可以随便填的,所以它们对答案的贡献是2^{(n-k)*(m-1)},(二进制考虑,每个数除了第0位,剩下的二进制位数为m-1,所以(n-k)*(m-1)个二进制位可以随便填)。

考虑奇数对答案的贡献,因为只能有一种子序列并且这个子序列必须是k个奇数构成的(如果只需要k-1个奇数,就可以满足条件,那么k个肯定也可以,所有不是只有一种子序列)。对于除了第0位的二进制位,k个数的某个二进制位必须保证有一个0。如何不重不漏的枚举每一种情况呢?如果当前二进制位的数为这一位二进制位的唯一一个0,那么这个位置就叫做特殊位,必须保证k个数,每个都有至少一个特殊位,如果没有特殊位就代表这个数可以被那走与要求不符。有i个数和j个特殊位的情况有多少种应该如何计算?考虑dp,可以想到如果多一个特殊位,只有二种情况,第一种是多了一个奇数,它带来了一个特殊位。第二种情况就是这些数里面有某个数多了一位特殊位。因为这个特殊位在不同的位置上会导致这个数的变化,所以状态转移方程就是dp[i][j]=i*(dp[i-1][j-1]+dp[i][j-1]),对于没有特殊位的二进制位,k个数每个都包含一个,所以一共是k个相同位置的二进制位,一共有2^{k}种情况,但是如果全部都是1,那么AND的值就不是1了,如果只有一个0,那么这个位置应该在特殊位的时候进行计算。所以不包含特殊位的值对答案的贡献就是(2^{k}-1-k),这是这一个二进制位的贡献,所以剩余的二进制位是(m-j-1),那么总共的贡献就是(2^{k}-1-k)^{m-1-j}。因为j个特殊点可以在m-1个位置任选,所以奇数的贡献是\sum_{k}^{m-1}(C\binom{j}{m-1}dp[k][j]*(2^{k}-1-k)^{m-1-j})

特别的,如果只有一个奇数,并且是1,那么有n*2^{(n-1)*(m-1)}种情况需要加上。

最终的只有一种序列答案是\sum_{1}^{n}(C\binom{k}{n}*2^{(n-k)*(m-1)}*(\sum_{k}^{m-1}C\binom{t}{m-1}*(2^{k}-1-k)^{m-1-t})))+n*2^{(n-1)*(m-1)}

//冷静,冷静,冷静
//调不出来就重构
#include<bits/stdc++.h>
#define endl '\n'
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<ll,ll> pii;
const int N=1e6+10;
ll mod;
ll ksm(ll a,ll b)
{
	ll ans=1;
	do
	{
		if(b&1)ans*=a;
		a*=a;b>>=1;
		ans%=mod;a%=mod;
	}while(b);
	return ans;
}
ll C[5010][5010];
ll f[5010][5010];
int main()
{
	ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
	ll n,m;cin>>n>>m>>mod;
	for(int i=0;i<=5001;i++)
	{
		for(int j=0;j<=i;j++)
		{
			if(!j)C[i][j]=1;
			else C[i][j]=C[i-1][j-1]+C[i-1][j];
			C[i][j]%=mod;
		}
	}
	f[0][0]=1;
	for(int i=1;i<=n;i++)//计算dp数组 
	{
		for(int j=1;j<=m;j++)
		{
			f[i][j]=i*(f[i][j-1]+f[i-1][j-1]);
			f[i][j]%=mod;
		}
	}
	ll ans=0;
	for(int i=1;i<=n;i++)//计算第一题的答案 
	{
		ans=ans+C[n][i]%mod*ksm(2,(n-i)*(m-1))%mod*ksm(ksm(2,i)%mod-1,m-1)%mod;
	    ans%=mod;
    }
	ll sum=0;
	sum=n*ksm(2,(n-1)*(m-1))%mod;//如果只有一个奇数,并且为1 
	for(int i=2;i<=n;i++)//按照公式计算就可以了 
	{
		ll v=C[n][i]*ksm(2,(n-i)*(m-1))%mod,w = ksm(2, i)-i-1,q=1;
		for(int j=m-1;j>=i;j--)
		{
			sum=sum+v%mod*C[m-1][j]%mod*f[i][j]%mod*q%mod;
            q=q*w%mod;
			sum%=mod;
		}
	}
	cout<<(ans-sum+mod)%mod;
    return 0;
}

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值