原题链接:G - Add and Multiply Queries
题意:给出数组a和b,三种操作,第一种:以 1 i x
的形式给出。用x替换ai。第二种:以 2 i x
的形式给出。用x代替 bi 。第三种:以3 l r的形式给出,初始值为0,从l到r每个位置上可以选择加上a[i],或者乘上b[i],输出最大值。
思路:链表+set+树状数组+二分。题目中给出了答案的范围不会超过1e18,那么就可以知道每次第三种操作的区间里面b数组大于等于2的数的数量不会大于63个。
因为初始值是0,所以第一次操纵一定是选择a[l],从l+1开始到b数组里面第一次出现大于等于2的数之间,肯定是之间加上a数组里面的数更加优秀,那么这一段区间的和怎么维护呢?因为操作一会修改a数组,所以需要可以满足区间查询,单点修改的数据结构,那么就是树状数组。这样操作一就完成。
考虑如何快速的找到b数组里面大于等于2的数的位置?可以使用链表来维护,链表的含义是当前位置的b数组值大于等于2的下一个大于等于2的位置,这样的话,就可以先找到[l,r]区间里面第一个大于等于2的位置,然后不断的往后面跳跃,直到大于r。那么怎么快速的找到第一个位置呢?可以想打把每一个节点的位置塞到set里面,然后二分的查找就可以了。这样操作三就完成了。
对于操作二来说,因为是用链表来写的,所以如果改变的值大于等于2,那么就把改变的位置加入链表,如果小于2,并且b数组这个位置大于2,那么就把这个节点舍弃。如何快速的找当前点之前的呢,还是在set里面二分。
//冷静,冷静,冷静
//调不出来就重构
//#pragma GCC optimize(2)
//#pragma GCC optimize("O3")
#include<bits/stdc++.h>
#define endl '\n'
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<ll,ll> pii;
const int N=1e6+10,mod=1000000007;
ll a[N],b[N],r[N],tree[N],l[N];
ll lowbit(ll x)
{
return x&(-x);
}
ll query(ll x)
{
ll sum=0;
while(x)
{
sum+=tree[x];
x-=lowbit(x);
}
return sum;
}
void updata(ll x,ll n,ll vel)
{
while(x<=n)
{
tree[x]+=vel;
x+=lowbit(x);
}
}
void Jiuyuan()
{
ll n;cin>>n;
for(int i=1;i<=n;i++)//读入a,并且更新树状数组
{
cin>>a[i];
updata(i,n,a[i]);
}
for(int i=1;i<=n;i++)cin>>b[i];
ll id=n+1;
set<ll> op;
for(int i=n;i;i--)//建立双向链表
{
if(b[i]>=2)
{
r[i]=id;
l[id]=i;
op.insert(id);
id=i;
}
}
r[0]=id;
l[id]=0;
op.insert(id);
ll q;cin>>q;
while(q--)
{
ll nm;cin>>nm;
if(nm==1)
{
ll wz,x;cin>>wz>>x;
updata(wz,n,-a[wz]+x);
a[wz]=x;
}
else if(nm==2)
{
ll wz,x;cin>>wz>>x;
ll hj=*op.lower_bound(wz);//先找到大于等于x的位置,然后这个位置之前的一个,那么wz就会被夹在中间
hj=l[hj];
if(x>=2)
{
ll a=hj,b=wz,c=r[hj];
if(c==wz)c=r[c];//如果本身就是大于等于2,那么就需要在多跳一次
r[a]=b;l[b]=a;
r[b]=c;l[c]=b;
op.insert(wz);
}
else
{
if(b[wz]>=2)
{
ll a=hj,b=wz,c=r[hj];
if(c==wz)c=r[c];
r[a]=c;
l[c]=a;
op.erase(wz);
}
}
b[wz]=x;
}
else
{
ll x,y;cin>>x>>y;
ll cs=a[x];
x++;
ll hj=*op.lower_bound(x);//找到第一个大于等于x并且满足要求的位置
while(hj<=y)
{
ll xx=x,yy=hj-1;
if(yy>=xx)//如果中间有b数组为1的区间,那么就加上a数组的值
{
cs+=query(yy);
cs-=query(xx-1);
}
cs=max(cs+a[hj],cs*b[hj]);//1*6 1+6 明显后者更好,所以比较一下
x=hj+1;
hj=r[hj];
}
cs+=query(y);//如果有多余的,那么就加上a数组的值
cs-=query(x-1);
cout<<cs<<endl;
}
}
}
int main()
{
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
ll T=1;
// cin>>T;
while(T--)
{
Jiuyuan();
}
return 0;
}